
Studica Robotics
Release 1.0.0

Studica

Sep 14, 2023

GETTING STARTED

1 Getting Started 3

2 Software Setup 5

3 Programming 15

4 LabVIEW Setup 47

5 LabVIEW Toolkit 65

6 Using LabVIEW 91

7 Getting Started 107

8 Using ROS 121

9 RQT 135

10 Control Station 139

11 Robotics and Control Systems 145

12 Networking 147

13 Connecting Sensors and Actuators 159

14 WPI Channel Addressing 167

15 Configuring and Testing the SR Pro Camera 175

16 Calibrating and Using the navX-sensor IMU 181

17 Updating Firmware 195

18 VMX OS Image 197

19 Troubleshooting 201

20 Titan Quad 205

21 Programming the Titan 207

22 Download Update App 213

i

23 Using the Update App 217

24 Titan Status Light 225

25 Troubleshooting 227

26 Cobra 229

27 Ultrasonic Distance Sensor 233

28 Sharp IR Distance Sensor 237

29 Limit Switches 241

30 Encoders 243

31 SR Pro Camera 251

32 Installing the Ribbon Cable 253

33 Reading a Barcode 265

34 Servo Motors 289

35 Maverick DC Motor 295

36 Servo Power Block 297

37 Servo Smart Programmer 299

38 Unit 1: Introduction to Programming 303

39 Unit 2: Starting Java 321

40 Unit 3: Java Essentials 341

41 Unit 4: Inputs and Methods 361

42 Style Guide 367

ii

Studica Robotics, Release 1.0.0

Welcome to the Studica Robotics documentation page. Here you will find lots of information and tutorials regarding
WorldSkills.

Hint: Python is currently only available on the Raspbian OS located on the VMX. Examples of using Python can be
found in /usr/local/src/hal_python_examples/

GETTING STARTED 1

Studica Robotics, Release 1.0.0

2 GETTING STARTED

CHAPTER

ONE

GETTING STARTED

Congratulations on joining the worldskills mobile robotics enviroment. On this documentation site you will find lots
of content relating to the worldskills mobile robotics collection. This covers hardware and the software side of the
collection.

Below are the first steps to getting your robot moving.

1.1 Software

• Downloading and setting up VS Code

• Getting to know VS Code

• Creating a Project

• Configuring the Project for the VMX-pi

• Base Project Outline

• Adding the Vendor Libraries

1.2 Zero to Moving Robot

3

https://docs.wsr.studica.com/en/latest/docs/Software/software-setup/index.html
https://docs.wsr.studica.com/en/latest/docs/Software/programming/getting-to-know-vs-code.html
https://docs.wsr.studica.com/en/latest/docs/Software/programming/creating-a-project.html
https://docs.wsr.studica.com/en/latest/docs/Software/programming/configuring-the-project-for-vmxpi.html
https://docs.wsr.studica.com/en/latest/docs/Software/programming/base-project-outline/index.html
https://docs.wsr.studica.com/en/latest/docs/Software/programming/adding-vendor-libraries.html

Studica Robotics, Release 1.0.0

4 Chapter 1. Getting Started

CHAPTER

TWO

SOFTWARE SETUP

Important: Online download instructions removed due to bad link on VS Code install. Please use the offilne
instructions and the USB in your kit.

Note: This setup is for Java/C++ only

2.1 Offline Installer

Important: If the USB in your kit does not contain the correct files, they can be downloaded here.

Windows

Warning: Windows 7: You must install the standalone version of .NET Version 4.62+ which can be found here.
Before preceding!

The offline installation files will be located in the USB provided inside the collection. Locate and run the file named
WPILibInstaller_Windows64-2020.3.2.exe or WPILibInstaller_Windows32-2020.3.2.exe
based on your OS.

Installing for All Users will require admin privileges and install for all users on the machine.

5

https://studicalimited.sharepoint.com/:f:/s/SR-Resources/EthAxkm4x1dNropZVW7TmpwB9mmQFKnIrEiO4Vgcd51rzA?e=woH78E
https://support.microsoft.com/en-us/help/3151800/the-net-framework-4-6-2-offline-installer-for-windows

Studica Robotics, Release 1.0.0

Note: Software will be installed to C:\Users\Public\wpilib\YYYY. YYYY Corresponds to the currently
suppored year.

Installing VS Code

Due to licensing reasons with VS Code the installer does not contain it bundled in. To overcome this hit
the Select/Download VS Code button.

This will open up the selector tool.

Select the Select Existing Download option and then select the file OfflineVsCodeFiles-1.41.
1.zip. This will change back to the installer window and Execute Install can be run.

What was just Installed

• Visual Studio Code - The preferred and supported IDE for robot code development.

• C++ Compiler - Toolchains required for building C++ code.

• Java JDK/JRE - Specific version of the JDK/JRE that is used to build code.

• Gradle - Specific version of Gradle used for building and deploying Java or C++ code

• WPILib Tools - Tools used for robot enhancement

• WPILib Dependencies - OpenCV, etc.

6 Chapter 2. Software Setup

Studica Robotics, Release 1.0.0

• VS Code Extensions - WPILib extensions for robot code development

Important: The installer creates a separate version of VS Code for robotics development, even if VS Code is already
installed locally. This is done to prevent workflows from breaking.

macOS

Note: This section and all macOS examples was completed and tested using macOS High Sierra

The macOS installation requires multiple individual steps to be completed.

VS Code Install

VS Code needs to be installed before the extensions are installed. The preferred version of VS Code
is 1.41.1 which can be found in the provided USB stick in the macOS folder. The file is called
VSCode-darwin-stable.zip. Double click on the zip folder if it’s not extracted already and drag
the Visual Studio Code into the Applications folder.

After dragging to the Applications folder the VS Code Icon will be visible in Applications

2.1. Offline Installer 7

Studica Robotics, Release 1.0.0

WPILib Install

The WPILib file WPILib_Mac-2020.3.2.tar.gz can be found in the macOS folder in the USB
provided.

Double click on the WPILib_Mac-2020.3.2.tar.gz to remove the .gz extension. Dou-
ble click again on the WPILib_Mac-2020.3.2.tar to remove the .tar extension. Drag the
WPILib_Mac-2020.3.2 folder into Downloads.

Open the terminal and run these commands

mkdir wpilib/2020

cp -R ~/Downloads/WPILib_Mac-2020.3.2/ ~/wpilib/2020

This will create the appropriate directories for WPILib and move the contents of WPILib_Mac-2020.
3.2 to the ~/wpilib/2020 folder. When done the folder structure should look like this.

The tools need to be updated so they can be used. Run the commands below to do so.

cd ~/wpilib/2020/tools

python ToolsUpdater.py

An example of using the terminal is shown below.

Installing Extensions

For VS Code to work properly the WPILib extensions need to be installed. Open VS Code and use
the shortcut Cmd-Shift-P to open the command pallet. Type in the command Extensions:
Install from VSIX.

8 Chapter 2. Software Setup

Studica Robotics, Release 1.0.0

2.1. Offline Installer 9

Studica Robotics, Release 1.0.0

Navigate to the ~/wpilib/2020/vsCodeExtensions folder, select Cpp.vsix and hit install.

Repeat this step for all the vsix files located in ~/wpilib/2020/vsCodeExtensions.

They must be completed in this order:

1. Cpp.vsix

2. JavaLang.vsix

3. JavaDeps.vsix

4. JavaDebug.vsix

5. WPILib.vsix

Note: On the bottom right of the VS Code window popups will show saying if the installation is complete.
Wait until there is a completed popup before preceding with the next extension. Also when installing the
JavaLang.vsix there may be an error shown. This should be ignored for now

Getting VS Code to use Java 11

VS Code needs to be pointed to where the WPILib Java Home is. This is simply done by running the
following command WPILib: Set VS Code Java Home to FRC Home.

What was just Installed

• Visual Studio Code - The preferred and supported IDE for robot code development.

10 Chapter 2. Software Setup

Studica Robotics, Release 1.0.0

• C++ Compiler - Toolchains required for building C++ code.

• Java JDK/JRE - Specific version of the JDK/JRE that is used to build code.

• Gradle - Specific version of Gradle used for building and deploying Java or C++ code

• WPILib Tools - Tools used for robot enhancement

• WPILib Dependencies - OpenCV, etc.

• VS Code Extensions - WPILib extensions for robot code development

Linux

Note: This section and all Linux examples was completed and tested using Ubuntu Desktop 20.04 LTS

The Linux installation requires multiple individual steps to be completed.

Installing VS Code

VS Code needs to be installed before the extensions are installed. The preferred version of VS Code is
1.41.1 which can be found in the Linux folder in the USB provided.

Using the file code_1.41.1-1576681836_amd64.deb, right click on the file and select Open
With Other Application and chose Software Install. When software install opens verify
the Version number as 1.41.1 and hit Install.

There should be an Authentication prompt asking for the user to input their password. After the Authen-
tication window the install will start and should only take a minute.

WPILib Installation

The WPILib file WPILib_Linux-2020.3.2.tar.gz can be found in the Linux folder on the pro-
vided USB. Place the file in the Downloads folder. Right click on the WPILib_Linux-2020.3.2.
tar.gz and select Extract Here. This will extract the contents and they can be moved.

Open Terminal and run these commands.

2.1. Offline Installer 11

Studica Robotics, Release 1.0.0

mkdir -p ~/wpilib/2020

mv -v ~/Downloads/WPILib_Linux-2020.3.2/* ~/wpilib/2020

python3 ~/wpilib/2020/tools/ToolsUpdater.py

This will move everything to the correct location and run the updater for the tools.

VS Code Extensions

For VS Code to be used for robotics the extensions from WPILib need to be installed.

1. Open VS Code using terminal by typing in code.

2. To open the command palette use Ctrl+Shift+P or hit F1.

3. In the command palette run the command Extensions: Install From VSIX.

4. Extensions can be found in ~/wpilib/2020/vsCodeExtensions

Install the Extensions in this Order

1. Cpp.vsix

2. JavaLang.vsix

3. JavaDeps.vsix

4. JavaDebug.vsix

5. WPILib.vsix

Note: After installing an extension it’s recommended to close and reopen VS Code.

Getting VS Code to use Java 11

VS Code needs to be pointed to where the WPILib Java Home is. This is simply done by running the
following command WPILib: Set VS Code Java Home to FRC Home.

Vulkan Installation

12 Chapter 2. Software Setup

Studica Robotics, Release 1.0.0

For the simulation GUI to run, Vulkan is required. To install Vulkan there is a libvulkan1_1.2.
131.2-1_amd64.deb file located in the Linux folder on the USB. Right click on the file and select
Open With Other Application and chose Software Install. This will then bring up the
software install screen where you will hit Install, and the driver will then proceed to install.

What was just Installed

• Visual Studio Code - The preferred and supported IDE for robot code development.

• C++ Compiler - Toolchains required for building C++ code.

• Java JDK/JRE - Specific version of the JDK/JRE that is used to build code.

• Gradle - Specific version of Gradle used for building and deploying Java or C++ code

• WPILib Tools - Tools used for robot enhancement

• WPILib Dependencies - OpenCV, etc.

• VS Code Extensions - WPILib extensions for robot code development

• Vulkan - Low overhead graphics API

2.1. Offline Installer 13

Studica Robotics, Release 1.0.0

14 Chapter 2. Software Setup

CHAPTER

THREE

PROGRAMMING

3.1 Getting to Know VS Code

This guide will show you how to navigate VS Code along with some helpful hints

Microsoft’s Visual Studio Code is the supported IDE for C++ and Java development for WorldSkills Mobile Robotics.
This section introduces some of the basics of using Visual Studio Code and the WPILib extension.

3.1.1 Welcome Page

When Visual Studio Code first opens, you are presented with a Welcome page. On this page you will find some quick
links that allow you to customize Visual Studio Code as well as several links to help documents and videos that may
help you learn about the basics of the IDE as well as some tips and tricks.

15

Studica Robotics, Release 1.0.0

You may also notice a small WPILib logo way up in the top right corner. This is one way to access the features
provided by the WPILib extension (discussed further below).

1. The icons on the left edge make up the “Activity Bar”. Clicking on the icons will open the “Sidebar” which
offers more functions.

2. The icon on top opens the “Explorer” sidebar which shows all the files that you can edit. This should already be
open when you open the IDE using the FRC VSCode shortcut.

3. The squarish icon on bottom opens the “Extension” sidebar, which lets you manage software extensions for
VSCode.

4. Hitting control-B (or command-B on a Mac) will toggle away the sidebar, so you can make full use of screen
space.

5. Holding the control key down and hitting the back-quote character will open a terminal panel on the lower part
of the screen. (The back-quote character is usually in the upper left corner of your keyboard, just under the
Esc key). You’ll probably need to get comfortable with terminals and command lines when developing with
VSCode.

6. Hitting control-back-quote again will toggle the terminal away.

7. The F1 key will open the “Command Palette” at the top of the screen. Also, you can hit control-shift-P on
Windows or Linux. Macintosh users can hit Command-Shift-P. The Command Palette lets you invoke special
commands inside VSCode. It’s pretty good about offering you suggestions for what you want to do. Many
of these functions are available from menus or from keyboard shortcuts, but you’ll find yourself using the
Command Palette a lot.

8. Almost everything in VSCode is going to be controlled through the command palette, everything from making
a new project in WPILib to changing the setting of the editor, to debug, to building, etc.

The FRC extension for WPILib adds new commands to the Command Palette for building robot code and reconfiguring
your robot development environment.

Everything that you add to the editor is going to be done though extensions, so everything that you want to install for
example such as C++ or the debugger for Java is also installed here. Also, the WPILib which is the basic library.

The second portion if the UI will be the sidebar, so in the sidebar you have all your files, so any files that you have
open, or projects that you have open. The folder will be here which is basically your project and anything that you are
currently editing or have open will appear as well.

3.2 Creating a Project

This guide will show ho to create a Java or C++ project for use in robotics

Java

Open the appropriate VS Code FRC VS Code 2020 and hit CTRL + Shift + P. This will open the command
palette in VS Code. Consult the Getting to know VS Code section if you are unsure of what to do!

In the command palette search for the command WPILib: Create a new project. An example is shown
below.

This will open the project creator window

1. Start by clicking on the Select a project type (Example or Template) button and select template

16 Chapter 3. Programming

Studica Robotics, Release 1.0.0

2. Chose a programing language by selecting the Select a language button. In this case Java

3. For Select a project base select Command Robot

4. Chose a folder location to store the project

5. Enter an appropriate project name

6. Enter your team number

An example of a filled out project creator is shown below

Hit Generate Project to finilize the creation of the project. There will be a prompt as shown to open in a new window
or the current window. A new window will open another instance of VS Code whereas the current window will close
the any open project you have and place this project in the currently opened VS Code window.

Note: The project will then automaticaly build the for the first time. If the build is not successful constult the

3.2. Creating a Project 17

Studica Robotics, Release 1.0.0

troubleshooting section

The VS Code window should now look like this and a Java project has been created!

C++

Caution: Anti-virus might need to be disabled in order for a C++ project to compile

Open the appropriate VS Code FRC VS Code 2020 and hit CTRL + Shift + P. This will open the command
pallete in VS Code. Consult the Getting to know VS Code section if you are unsure of what to do!

In the command pallete search for the command WPILib: Create a new project. An example is shown
below.

This will open the project creator window

1. Start by clicking on the Select a project type (Example or Template) button and select template

2. Chose a programing language by selecting the Select a language button. In this case cpp

3. For Select a project base select Command Robot

4. Chose a folder location to store the project

5. Enter an appropriate project name

6. Enter your team number

An example of a filled out project creator is shown below

18 Chapter 3. Programming

Studica Robotics, Release 1.0.0

Hit Generate Project to finilize the creation of the project. There will be a prompt as shown to open in a new window
or the current window. A new window will open another instance of VS Code whereas the current window will close
the any open project you have and place this project in the currently opened VS Code window.

Note: The project will then automaticaly build the for the first time. If the build is not successful constult the
troubleshooting section

The VS Code window should now look like this and a Java project has been created!

3.2. Creating a Project 19

Studica Robotics, Release 1.0.0

3.3 Configuring the project for VMXpi

This guide will show the steps required to configure the project to be deployed to the VMXpi.

Important: This extension is also used to cache updates to be sent to the VMXpi. It is important to make sure this
extension and the version of build.gradle is up to date.

3.3.1 Installing VMXpi Extension

A VSCode extension was created to manage the build.gradle file in the project folder. The extension allows for
the project to swap between the roboRIO and VMXpi as targets for deployment.

To install the extension head over to the Extensions tab on the left panel or hit Ctrl + Shift + X.

In the search bar, search for VMX.

Click on the extension to open the extension page in the main window.

Click on Install to install the extension.

The installation will be successful when you see the VMXpi logo pop up next to the WPILib logo.

20 Chapter 3. Programming

Studica Robotics, Release 1.0.0

3.3. Configuring the project for VMXpi 21

Studica Robotics, Release 1.0.0

3.3.2 Using the Extension

There are four commands in the extension palette.

• Update WPILib Version will update to the current GradleRIO version for the VMXpi

• Change the deploy target to VMX-Pi (from RoboRIO) will update the build.gradle file
to use the VMXpi as a target

• Change the deploy target to RoboRIO (from VMX-Pi) will update the build.gradle file
to use the roboRIO as a targets

• Verify the Project's build.grade file checks if everything is good to go with the file

To switch the project over for the VMXpi, the command Change the deploy target to VMX-Pi (from
RoboRIO) needs to be run. After running, it will auto rebuild the project and cache any libraries that are missing.

3.3.3 Installing the Raspbain Toolchain (c++ only)

For c++ the Raspbian Toolchain is required for building and deploying to the VMX-pi.

Option 1

The first option is to use the VMX-pi Extension. Open the extension and use the command Change the deploy
target to VMX-pi (from RoboRIO). This process will then install a bunch of files including the toolchain.

Option 2

The second option is to download toolchain manually. Open the WPILib extension and use the run a command in
gradle command.

In the window then use the command installRaspbianToolchain

22 Chapter 3. Programming

Studica Robotics, Release 1.0.0

3.4 Base Project Outline

3.4.1 Robot

Java

There are multiple sections of Robot.java, below discusses each one and the purpose

Title Block

1 /*--*/
2 /* Copyright (c) 2019 FIRST. All Rights Reserved. */
3 /* Open Source Software - may be modified and shared by FRC teams. The code */
4 /* must be accompanied by the FIRST BSD license file in the root directory of */
5 /* the project. */
6 /*--*/

Hint: The title block is important as it displays licenses, authors, last edited dates, etc. . .

Some nice things to have in any title block would be the author and date. This would provide the next person
coming to see who wrote what and when they wrote it.

Imports

The import section holds all the imports of various libraries that are required for use in the current class.

8 package frc.robot;
9

10 import edu.wpi.first.wpilibj.TimedRobot;
11 import edu.wpi.first.wpilibj.command.Command;
12 import edu.wpi.first.wpilibj.command.Scheduler;
13 import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
14 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
15 import frc.robot.commands.ExampleCommand;
16 import frc.robot.subsystems.ExampleSubsystem;

Class Declaration

In every Java program the class needs to be declared. Below is the class declaration for the Robot.java class.

18 /**
19 * The VM is configured to automatically run this class, and to call the
20 * functions corresponding to each mode, as described in the TimedRobot
21 * documentation. If you change the name of this class or the package after
22 * creating this project, you must also update the build.gradle file in the
23 * project.
24 */
25 public class Robot extends TimedRobot {

Declaring Objects

3.4. Base Project Outline 23

Studica Robotics, Release 1.0.0

This section declares objects that are required for use later in the class.

26 public static ExampleSubsystem m_subsystem = new ExampleSubsystem();
27 public static OI m_oi;
28

29 Command m_autonomousCommand;
30 SendableChooser<Command> m_chooser = new SendableChooser<>();

Robot Initialization

This is where any code is to be run when the robot is first booting up.

32 /**
33 * This function is run when the robot is first started up and should be
34 * used for any initialization code.
35 */
36 @Override
37 public void robotInit() {
38 m_oi = new OI();
39 m_chooser.setDefaultOption("Default Auto", new ExampleCommand());
40 // chooser.addOption("My Auto", new MyAutoCommand());
41 SmartDashboard.putData("Auto mode", m_chooser);
42 }

Robot Periodic

Warning: Code here is run every robot packet and is not controlled by the Enable/Disable buttons.

Robot periodic is a good section to add code for diagnostics or anything that requires constant polling.

44 /**
45 * This function is called every robot packet, no matter the mode. Use
46 * this for items like diagnostics that you want ran during disabled,
47 * autonomous, teleoperated and test.
48 *
49 * <p>This runs after the mode specific periodic functions, but before
50 * LiveWindow and SmartDashboard integrated updating.
51 */
52 @Override
53 public void robotPeriodic() {
54 }

Disabled Initialization

When ever the robot is put into a disabled state it enters here first.

56 /**
57 * This function is called once each time the robot enters Disabled mode.
58 * You can use it to reset any subsystem information you want to clear when
59 * the robot is disabled.
60 */
61 @Override
62 public void disabledInit() {
63 }

Disabled Periodic

Code that will run every robot packet when the robot is disabled.

24 Chapter 3. Programming

Studica Robotics, Release 1.0.0

65 @Override
66 public void disabledPeriodic() {
67 Scheduler.getInstance().run();
68 }

Autonomous Initialization

Code that is run at the start of an autonomous run.

70 /**
71 * This autonomous (along with the chooser code above) shows how to select
72 * between different autonomous modes using the dashboard. The sendable
73 * chooser code works with the Java SmartDashboard. If you prefer the
74 * LabVIEW Dashboard, remove all of the chooser code and uncomment the
75 * getString code to get the auto name from the text box below the Gyro
76 *
77 * <p>You can add additional auto modes by adding additional commands to the
78 * chooser code above (like the commented example) or additional comparisons
79 * to the switch structure below with additional strings & commands.
80 */
81 @Override
82 public void autonomousInit() {
83 m_autonomousCommand = m_chooser.getSelected();
84

85 /*
86 * String autoSelected = SmartDashboard.getString("Auto Selector",
87 * "Default"); switch(autoSelected) { case "My Auto": autonomousCommand
88 * = new MyAutoCommand(); break; case "Default Auto": default:
89 * autonomousCommand = new ExampleCommand(); break; }
90 */
91

92 // schedule the autonomous command (example)
93 if (m_autonomousCommand != null) {
94 m_autonomousCommand.start();
95 }
96 }

Autonomous Periodic

Code that is run every robot packet during the autonomous run.

Teleop Initialization

Code that is run at the start of a teleoperated run.

106 @Override
107 public void teleopInit() {
108 // This makes sure that the autonomous stops running when
109 // teleop starts running. If you want the autonomous to
110 // continue until interrupted by another command, remove
111 // this line or comment it out.
112 if (m_autonomousCommand != null) {
113 m_autonomousCommand.cancel();
114 }
115 }

Teleop Periodic

Code that is run every robot packet when in a periodic run.

3.4. Base Project Outline 25

Studica Robotics, Release 1.0.0

117 /**
118 * This function is called periodically during operator control.
119 */
120 @Override
121 public void teleopPeriodic() {
122 Scheduler.getInstance().run();
123 }

Test Periodic

Code that is run every robot packet when in a test run.

125 /**
126 * This function is called periodically during test mode.
127 */
128 @Override
129 public void testPeriodic() {
130 }

3.4.2 Constants

Java

The Constants.java class is one of the most used classes in the whole project. Although there is nothing inside
the base class, once filled with constants it makes changing something electrical on the robot very easy.

1 /*--*/
2 /* Copyright (c) 2018-2019 FIRST. All Rights Reserved. */
3 /* Open Source Software - may be modified and shared by FRC teams. The code */
4 /* must be accompanied by the FIRST BSD license file in the root directory of */
5 /* the project. */
6 /*--*/
7

8 package frc.robot;
9

10 /**
11 * The Constants class provides a convenient place for teams to hold robot-wide

→˓numerical or boolean
12 * constants. This class should not be used for any other purpose. All constants

→˓should be
13 * declared globally (i.e. public static). Do not put anything functional in this

→˓class.
14 *
15 * <p>It is advised to statically import this class (or one of its inner classes)

→˓wherever the
16 * constants are needed, to reduce verbosity.
17 */
18 public final class Constants {
19 }

Whats nice about the constants class is that we can map out a whole robot here and if a change is ever made electrically,
such as putting motor 0 in motor 1’s port its as simple as changing the constant here and not having to do it in every
class that we have.

Below is an example of a constants class used in a robot.

26 Chapter 3. Programming

Studica Robotics, Release 1.0.0

1 package frc.robot;
2

3

4 public class ElectricalConstants {
5

6 /**
7 * Drive Constants
8 */
9

10 //Right Drive
11 public static final int RIGHT_DRIVE_FRONT = 3;
12 public static final int RIGHT_DRIVE_BACK = 2;
13

14 //Left Drive
15 public static final int LEFT_DRIVE_FRONT = 0;
16 public static final int LEFT_DRIVE_BACK = 1;
17

18 /**
19 * Drive Encoders
20 */
21

22 //Right Encoder
23 public static final int RIGHT_DRIVE_FRONT_ENCODER_A = 2;
24 public static final int RIGHT_DRIVE_FRONT_ENCODER_B = 3;
25 public static final int RIGHT_DRIVE_BACK_ENCODER_A = 0;
26 public static final int RIGHT_DRIVE_BACK_ENCODER_B = 1;
27

28 //Left Encoder
29 public static final int LEFT_DRIVE_FRONT_ENCODER_A = 4;
30 public static final int LEFT_DRIVE_FRONT_ENCODER_B = 5;
31 public static final int LEFT_DRIVE_BACK_ENCODER_A = 6;
32 public static final int LEFT_DRIVE_BACK_ENCODER_B = 7;
33

34 /**
35 * Encoder Constants
36 */
37

38 //Radius of drive wheel in inches
39 public static final int wheelRadius = 2;
40

41 //Encoder Pulses per rotation
42 public static final int pulsePerRotation = 1120;//280
43

44 //Gear Ratio between encoder and wheel
45 public static final double gearRatio = 1/1;
46

47 //Pulse per Rotation ofthe wheel
48 public static final double encdoerPulseRatio = pulsePerRotation *

→˓gearRatio;
49

50 //Distance per tick
51 public static final double encoderDistPerTick = (Math.PI * 2 *

→˓wheelRadius) / encdoerPulseRatio;
52

53 //Encoder Reverse
54 public static final boolean rightDriveEncoderReverse = false;
55 public static final boolean leftDriveEncoderReverse = false;
56 }

3.4. Base Project Outline 27

Studica Robotics, Release 1.0.0

3.5 Adding Vendor Libraries

Adding a vendor library is simple. Open VS Code then the command palette using Ctrl+Shift+P or F1 and type
the following command WPILib: Manage Vendor Libraries. This will open a list of choices as shown.

• Manage current libraries - Shows the current libraries installed and allows you to remove them.

• Check for updates(offline) - will check if there is an update for a library in the offline folder.

• Check for updates(online) - will check if there is an update for a library online.

• Install new libraries(offline) - will install a new library in the offline folder.

• Install new libraries(online) - will install a new library from the internet.

For this guide select Install new libraries(online).

There are multiple vendor libraries available. The ones supported on the VMXpi are listed below.

• Kauailabs’ NavX Library

https://www.kauailabs.com/dist/frc/2020/navx_frc.json

• Studica’s Titan Library

http://dev.studica.com/releases/2020/Studica.json

3.6 Autonomous

This section contains everything required to creating an autonomous routine for a robot. Start by reading over the auto
basics before looking at the examples. This will help you better understand the command base autonomous.

3.6.1 Auto Basics

Below are some of the basic concepts to command based autonomous. With some execptions each concept has a Java
and C++ example.

28 Chapter 3. Programming

https://www.kauailabs.com/dist/frc/2020/navx_frc.json
http://dev.studica.com/releases/2020/Studica.json

Studica Robotics, Release 1.0.0

Command Groups

Sequential Command Group

The SequentialCommandGroup is the most popular command group. Works by running a list of commands in
sequential order. Starts with the first command in the list then the second and so on.

Warning: The SequentialCommandGroupwill not finish unless all the commands finish. Also if a command
in the list does not finish the next command in line will not start.

Example code

Java

1 import edu.wpi.first.wpilibj2.command.SequentialCommandGroup;
2

3 public class Example extends SequentialCommandGroup
4 {
5 public Example()
6 {
7 addCommands(
8 //Drive Forward
9 new DriveForward(),

10

11 //Drive Reverse
12 new DriveReverse());
13 }
14 }

C++ (Header)

1 #prama once
2

3 #include <frc2/command/CommandHelper.h>
4 #include <frc2/command/SequentialCommandGroup.h>
5

6 class Example
7 : public frc2::CommandHelper<frc2::SequentialCommandGroup, Example>
8 {
9 public:

10

11 Example(void);
12 };

C++ (Source)

1 #include "commands/Example.h"
2

3 Example::Example(void)
4 {
5 AddCommands(
6

7 //Drive Forward
8 DriveForward(),

(continues on next page)

3.6. Autonomous 29

Studica Robotics, Release 1.0.0

(continued from previous page)

9

10 //Drive Backwards
11 DriveReverse());
12 }

In the above example using SequentialCommandGroup the command DriveForward() will be exeuted first
and when complete the command DriveReverse() will be executed.

Note: If DriveForward() does not end then DriveReverse() will never start.

Parallel Command Group

The ParallelCommandGroup is just like the SequentialCommandGroup except that all the commands run
at the same time. The command group will only finish when all commands are finished.

Example code

Java

1 import edu.wpi.first.wpilibj2.command.ParallelCommandGroup;
2

3 public class Example extends ParallelCommandGroup
4 {
5 public Example()
6 {
7 addCommands(
8 //Drive Forward
9 new DriveForward(),

10

11 //Drive Reverse
12 new DriveReverse());
13 }
14 }

C++ (Header)

1 #prama once
2

3 #include <frc2/command/CommandHelper.h>
4 #include <frc2/command/ParallelCommandGroup.h>
5

6 class Example
7 : public frc2::CommandHelper<frc2::ParallelCommandGroup, Example>
8 {
9 public:

10

11 Example(void);
12 };

C++ (Source)

30 Chapter 3. Programming

Studica Robotics, Release 1.0.0

1 #include "commands/Example.h"
2

3 Example::Example(void)
4 {
5 AddCommands(
6

7 //Drive Forward
8 DriveForward(),
9

10 //Drive Backwards
11 DriveReverse());
12 }

In the above example using ParallelCommandGroup the commands DriveForward()``and
``DriveReverse() will be executed at the same time.

Note: If DriveForward() and DriveReverse() do not complete then whatever calls Example() will never
move on.

Parallel Race Group

The ParallelRaceGroup is similar to the ParallelCommandGroup except that a race condition is being
created. All commands start at the same time but when one command is finished it interrupts all the other commands
running and ends the command group.

Example code

Java

1 import edu.wpi.first.wpilibj2.command.ParallelRaceGroup;
2

3 public class Example extends ParallelRaceGroup
4 {
5 public Example()
6 {
7 addCommands(
8 //Drive Forward
9 new DriveForward(),

10

11 //Drive Reverse
12 new DriveReverse());
13 }
14 }

C++ (Header)

1 #prama once
2

3 #include <frc2/command/CommandHelper.h>
4 #include <frc2/command/ParallelRaceGroup.h>
5

6 class Example
(continues on next page)

3.6. Autonomous 31

Studica Robotics, Release 1.0.0

(continued from previous page)

7 : public frc2::CommandHelper<frc2::ParallelRaceGroup, Example>
8 {
9 public:

10

11 Example(void);
12 };

C++ (Source)

1 #include "commands/Example.h"
2

3 Example::Example(void)
4 {
5 AddCommands(
6

7 //Drive Forward
8 DriveForward(),
9

10 //Drive Backwards
11 DriveReverse());
12 }

In the above example using ParallelRaceGroup the commands DriveForward() and DriveReverse()
will be executed at the same time.

Note: If DriveForward() or DriveReverse() complete before the other than the other will be interrupted
and stop running.

Java Only Benefits

Java has some unique features in it’s language base and one of those features is Static Factory Methods. This allows a
simplar way to declare command groups.

sequence()

The sequence() static method allows for a sequential command group.

parallel()

The parallel() static method allows for a parallel command group

32 Chapter 3. Programming

Studica Robotics, Release 1.0.0

race()

The race() static method allows for a parallel race group.

Example code

Java

1 import edu.wpi.first.wpilibj2.command.SequentialCommandGroup;
2

3 public class Example extends SequentialCommandGroup
4 {
5 public Example()
6 {
7 addCommands(
8 race(new DriveForward(), new ElevatorUP()),
9 parallel(new ShootObject(), new LineupGoal()),

10 sequence(new DriveReverse(), new StrafeRight()));
11 }
12 }

If we analyze this command group we can break down what is happening.

1. We have race(new DriveForward(), new ElevatorUP()) this will create a
ParallelRaceGroup that has the two commands DriveForward() and ElevatorUP() run at
the same time in a race. When one finishes it will stop the other.

2. As the main command group is the SequentialCommandGroup we then move on to the next command
which is a ParallelCommandGroup.

3. The ParallelCommandGroup of parallel(new ShootObject(), new LineupGoal()) tells
us that ShootObject() and LineupGoal() happen at the same time. When both are complete it will pass
to the next command group.

4. The last command group here is the sequence(new DriveReverse(), new StrafeRight())
which is also a SequentialCommandGroup. This group is telling the robot to DriveReverse() and
when that is done to StrafeRight().

Conditional Command

The ConditionalCommand will run one command or another based on a condtion that must be met.

Example

Java

1 // Base parameters
2 new ConditionalCommand(trueCommand, falseCommand, boolean condition);
3

4 // Use case
5 new ConditionalCommand(new DriveForward(), new DriveReverse(), isLimitHit());

C++

3.6. Autonomous 33

Studica Robotics, Release 1.0.0

1 frc2::ConditionalCommand(trueCommand, falseCommand, [&limit] {return isLimitHit();});

Wait Command

The WaitCommand() is useful for a when a timed wait period is required.

Example

Java

1 // Waits 10 seconds
2 new WaitCommand(10);

C++

1 // Waits 10 seconds
2 frc2::WaitCommand(10.0_s);

Wait Until Command

The WaitUntilCommand is an upgraded version of WaitCommand as a boolean condition can be added.

Example

Java

1 // Waits 10 seconds
2 new WaitUntilCommand(10);
3

4 // Waits for limit switch to be true
5 new WaitUntilCommand(isLimitHit());

C++

1 // Waits 10 seconds
2 frc2::WaitUntilCommand(10.0_s);
3

4 // Waits for limit switch to be true
5 frc2.WaitUntilCommand([&Limit] {return isLimitHit();});

Command Decorators

Command decorators take the base command and add additonal functionalities to it.

34 Chapter 3. Programming

Studica Robotics, Release 1.0.0

withTimeout()

Adds a timeout to the command. When the timeout expires the command will be interrupted and end.

Java

1 // Add a 10 second timeout
2 new command.withTimeout(10);

C++

1 // Add a 10 second timeout
2 command.WithTimeout(10.0_s);

withInterrupt()

Adds a condition that will interrupt the command.

Java

1 new command.withInterrupt(isLimitHit());

C++

1 command.WithInterrupt([&limit]{return isLimitHit();});

andThen()

Adds a method that is executed after the command ends.

Java

1 new command.andThen(() -> System.out.println("Command Finished"));

C++

1 command.AndThen([] {std::cout<< "Command Finished";});

beforeStarting()

Adds a method that is executed before the command starts.

Java

1 new command.beforeStarting(() -> System.out.println("Command Starting"));

C++

1 command.BeforeStarting([] {std::cout<< "Command Starting"});

3.6. Autonomous 35

Studica Robotics, Release 1.0.0

3.6.2 Flowcharting

Coming soon!!!

3.6.3 Simple Auto Example

Note: It’s best to download the example and follow along. The example project can be downloaded here.

This simple auto example will show the steps required to creating a very simple autonomous to spin the motor at 50%
speed for 5 seconds. Below are the indivdual steps required to creating the simple autonomous routine.

Constants

The Constants class will hold the two constants required for the Motor definitions on the Titan Quad Motor Con-
troller.

Java

1 package frc.robot;
2

3 public final class Constants
4 {
5 /**
6 * Motor Constants
7 */
8 public static final int TITAN_ID = 42;
9 public static final int MOTOR = 2;

10 }

• The constant TITAN_ID is the CAN ID for the Titan Quad. Out of box the ID is 42

• The constant MOTOR is the motor port on the Titan Quad that the motor is attached to. In this case that is M2.

DriveTrain

For the autonomous to work a subsystem needs to be defined and implemented. For this example only a single motor
needs to be created and a way to set the motor speed.

Java

1 package frc.robot.subsystems;
2

3 //Vendor imports
4 import com.studica.frc.TitanQuad;
5

6 //WPI imports
7 import edu.wpi.first.wpilibj2.command.SubsystemBase;
8 import frc.robot.Constants;
9

10 /**
11 * DriveTrain class
12 * <p>
13 * This class creates the instance of the Titan and enables and sets the speed of the

→˓defined motor.
(continues on next page)

36 Chapter 3. Programming

https://github.com/studica/WorldSkills-Example-Projects/tree/main/Simple%20Auto

Studica Robotics, Release 1.0.0

(continued from previous page)

14 */
15 public class DriveTrain extends SubsystemBase
16 {
17 /**
18 * Motors
19 */
20 private TitanQuad motor;
21

22 /**
23 * Constructor
24 */
25 public DriveTrain()
26 {
27 //Motors
28 motor = new TitanQuad(Constants.TITAN_ID, Constants.MOTOR);
29 }
30

31 /**
32 * Sets the speed of the motor
33 * <p>
34 * @param speed range -1 to 1 (0 stop)
35 */
36 public void setMotorSpeed(double speed)
37 {
38 motor.set(speed);
39 }
40 }

• Lines 4 - 8 are the imports required. The TitanQuad library for the motor, SubsystemBase for the subsystem,
and Constants for the motor parameters.

• Line 20 is the creation of the motor object.

• Lines 25 - 29 is the constructor required for creating an instance of the subsystem.

• Line 28 creates a new instance of the TitanQuad and assigns that instance to the M2 port.

• Line 36 - 39 is the mutator method to set the speed of the motor.

AutoCommand

The AutoCommand class is used to create the inline command stackup for autonomous routines. To learn more about
inline command stackups have a look at the Auto Basics section.

Java

1 package frc.robot.commands.auto;
2

3 //WPI imports
4 import edu.wpi.first.wpilibj2.command.Command;
5 import edu.wpi.first.wpilibj2.command.SequentialCommandGroup;
6

7 /**
8 * AutoCommand Class
9 * <p>

10 * This class is used to create the inline command stackup for autonomous routines
11 */

(continues on next page)

3.6. Autonomous 37

Studica Robotics, Release 1.0.0

(continued from previous page)

12 public abstract class AutoCommand extends SequentialCommandGroup
13 {
14 /**
15 * Base Constructor
16 */
17 public AutoCommand()
18 {
19 super();
20 }
21

22 /**
23 * Overloaded Constructor to create inline commands
24 * <p>
25 * @param cmd The cmd to be executed
26 */
27 public AutoCommand(Command ... cmd)
28 {
29 super(cmd);
30 }
31 }

• Lines 4 & 5 are the required imports for Command and SequentialCommandGroup.

• Lines 17 - 20 are the base constructor with no parameters.

• Lines 27 - 30 is the constructor that will be used for most if not all autonomous routines. The parameter will
be the inline string of commands to be run.

SimpleDrive

SimpleDrive is the command that controls the subsystem output. Commands can be called again and again which
makes them perfect for autonomous routines.

Java

1 package frc.robot.commands.driveCommands;
2

3 //WPI imports
4 import edu.wpi.first.wpilibj2.command.CommandBase;
5

6 //RobotContainer import
7 import frc.robot.RobotContainer;
8

9 //Subsystem imports
10 import frc.robot.subsystems.DriveTrain;
11

12 /**
13 * SimpleDrive class
14 * <p>
15 * This class drives a motor at 50% speed until the command is ended
16 */
17 public class SimpleDrive extends CommandBase
18 {
19 //Grab the subsystem instance from RobotContainer
20 private static final DriveTrain drive = RobotContainer.drive;
21

(continues on next page)

38 Chapter 3. Programming

Studica Robotics, Release 1.0.0

(continued from previous page)

22 /**
23 * Constructor
24 */
25 public SimpleDrive()
26 {
27 addRequirements(drive); // Adds the subsystem to the command
28 }
29

30 /**
31 * Runs before execute
32 */
33 @Override
34 public void initialize()
35 {
36

37 }
38

39 /**
40 * Called continously until command is ended
41 */
42 @Override
43 public void execute()
44 {
45 drive.setMotorSpeed(0.5); // Set motor speed to 50%
46 }
47

48 /**
49 * Called when the command is told to end or is interrupted
50 */
51 @Override
52 public void end(boolean interrupted)
53 {
54 drive.setMotorSpeed(0.0); // Stop motor
55 }
56

57 /**
58 * Creates an isFinished condition if needed
59 */
60 @Override
61 public boolean isFinished()
62 {
63 return false;
64 }
65

66 }

• Lines 4 - 10 are the imports required.

• Line 20 grabs the instance of the DriveTrain subsystem defined and instantiated in RobotContainer.

• Lines 25 - 28 are the constructor.

• Line 27 says that this command requires the subsystem drive which is the handle for the subsystem
DriveTrain.

• Lines 33 - 37 is the initialize section of the command. In this case there is nothing to initialize so it is left blank.

• Lines 42 - 46 is the execute section of the command. As long as the command is active anything in here will
run every robot packet (20ms).

3.6. Autonomous 39

Studica Robotics, Release 1.0.0

• Line 45 is setting the motor speed to 0.5 which is equal to 50% speed.

• Lines 51 - 55 is the end section of the command. When the command is scheduled to end or is interrupted this
method is called.

• Line 54 sets the motor speed to 0.0 this will stop the motor. It is a good idea to always add a stop motor
instruction here unless its not required.

• Lines 60 - 64 is the isFinished section of the command. This method can be called to check if the command is
finished or not. Useful if you wanted to put a stop condition based on sensor feedback here. For example using
the sharp sensor to sence distance and it hits the threshold.

DriveMotor

The DriveMotor class is the class used to create and send the inline auto command to AutoCommand. The
DriveMotor class is also the command that will be called by the auto scheduler.

Java

1 package frc.robot.commands.auto;
2

3 // import the SimpleDrive command
4 import frc.robot.commands.driveCommands.SimpleDrive;
5

6 /**
7 * DriveMotor class
8 * <p>
9 * This class creates the inline auto command to drive the motor

10 */
11 public class DriveMotor extends AutoCommand
12 {
13 /**
14 * Constructor
15 */
16 public DriveMotor()
17 {
18 /**
19 * Calls the SimpleDrive command and adds a 5 second timeout
20 * When the timeout is complete it will call the end() method in the

→˓SimpleDrive command
21 */
22 super(new SimpleDrive().withTimeout(5));
23 }
24 }

• Line 4 is the only import required for this auto command.

• Lines 16 - 23 is the constructor and auto command.

• Line 22 is the inline auto command. In this case we are running an instance of SimpleDrive and giving it a
5 second timeout. For this example the timeout gives us the 5 second runtime we are looking for in running the
motor at 50% for 5 seconds.

Note: A command can end before a timeout. Sometimes it’s a good idea to add timeouts in case a sensor gives bad
data or there was a unhandled error.

40 Chapter 3. Programming

Studica Robotics, Release 1.0.0

RobotContainer

The RobotContainer holds the instances of subsystems and helps organize commands.

Java

1 /*--*/
2 /* Copyright (c) 2018-2019 FIRST. All Rights Reserved. */
3 /* Open Source Software - may be modified and shared by FRC teams. The code */
4 /* must be accompanied by the FIRST BSD license file in the root directory of */
5 /* the project. */
6 /*--*/
7

8 package frc.robot;
9

10 //Java imports
11 import java.util.HashMap;
12 import java.util.Map;
13

14 //WPI imports
15 import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
16 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
17 import edu.wpi.first.wpilibj2.command.Command;
18

19 //Command imports
20 import frc.robot.commands.auto.AutoCommand;
21 import frc.robot.commands.auto.DriveMotor;
22

23 //Subsystem imports
24 import frc.robot.subsystems.DriveTrain;
25

26 /**
27 * RobotContainer Class
28 * <p>
29 * This class is used for creating the instances of subsystems and organizing commands
30 */
31 public class RobotContainer
32 {
33 //Define subsystems
34 public static DriveTrain drive;
35

36 //Define the auto selector
37 public static SendableChooser<String> autoChooser;
38 public static Map<String, AutoCommand> autoMode = new HashMap<>();
39

40 /**
41 * Constructor
42 */
43 public RobotContainer()
44 {
45 //Create an instance of subsystems
46 drive = new DriveTrain();
47 }
48

49 /**
50 * Used for getting the autonomous command to be executed
51 * @return autonmous command to execute
52 */

(continues on next page)

3.6. Autonomous 41

Studica Robotics, Release 1.0.0

(continued from previous page)

53 public Command getAutonomousCommand()
54 {
55 String mode = RobotContainer.autoChooser.getSelected();
56 SmartDashboard.putString("Chosen Auto Mode", mode);
57 return autoMode.getOrDefault(mode, new DriveMotor());
58 }
59 }

• Lines 11 - 24 are the required imports.

• Lines 34 - 38 create the objects for required subsystems and functions.

• Lines 43 - 47 is the RobotContainer constructor.

• Line 46 creates the instance of the subsystem DriveTrain.

• Lines 53 - 58 is the call to return the autonomous routine that we want the scheduler to run.

Robot

There are only few changes required in the main Robot class.

Java

1 import edu.wpi.first.wpilibj.smartdashboard.SendableChooser;
2 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
3 import frc.robot.commands.auto.DriveMotor;
4

5 /**
6 * This function is called once each time the robot enters Disabled mode.
7 */
8 @Override
9 public void disabledInit()

10 {
11 //Check to see if autoChooser has been created
12 if(null == RobotContainer.autoChooser)
13 {
14 RobotContainer.autoChooser = new SendableChooser<>();
15 }
16 //Add the default auto to the auto chooser
17 RobotContainer.autoChooser.setDefaultOption("Drive Motor", "Drive Motor");
18 RobotContainer.autoMode.put("Drive Motor", new DriveMotor());
19 SmartDashboard.putData(RobotContainer.autoChooser);
20 }

• Lines 1 - 3 are the required imports.

• Lines 8 - 20 are the modifications made to the previously empty disabledInit().

• Lines 12 - 15 check if autoChooser has beend created yet. If not then it creates autoChooser as a new Send-
ableChooser.

• Lines 17 - 19 add the default option to autoChooser and add autoChooser to the smartdashboard.

42 Chapter 3. Programming

Studica Robotics, Release 1.0.0

Running an Autonomous Routine

The code for the Simple Auto Example is now complete. However, we would now like to test and make sure our
autonomous routine works as it should.

Deploy the code to the VMX

Connect to the VMX and deploy the code. To deploy code hit F1 and type in WPILib: Deploy Robot Code.
This will then deploy the code to the VMX. A successful deploy will look like this.

Opening Control Center

Open up Control Center. Enter your robots IP address. Out of box IP address is 10.12.34.2.

This will also open up shuffleboard automatically and connect it to the robot server.

3.6. Autonomous 43

Studica Robotics, Release 1.0.0

Operating Control Center

Control Center and shuffleboard should now be open and viewable.

On the shuffleboard window only SendableChooser[0] will be visable. Chosen Auto Mode will become
visable after the robot is enabled at least once.

Hit a on the keyboard to switch to Autonomous mode. The Control Center should show that it’s in Autonomous
Disabled mode.

If you click on the drop down of SendableChooser[0] you can see that there is only one option. In future
autonomous examples we will be adding more options and they will be selectable in this drop down.

44 Chapter 3. Programming

Studica Robotics, Release 1.0.0

Running the Autonomous Routine

While in autonmous mode hit e to enable the robot and start the autonomous routine. The motor should now spin at
50% for 5 seconds based on the timeout that we set earlier. After 5 seconds the motor will stop. Notice that the robot
is still enabled even though the motor has stopped and there is no code running. Hit d to disabled the robot again. If
you hit e again the motor will spin again for 5 seconds.

Going Further

1. Try modifing the DriveMotor command to run the motor for a longer period of time.

2. Try modifing the SimpleDrive command to allow for a custom speed to be passed through from the
DriveMotor command.

3. Enabled the robot and while the motor is still spinnig hit the disabled key d and see what happens.

Attention: The LabVIEW image only currently works on Raspberry Pi 4’s that do not have a UKCA marking on
the bottom. A new image is in the works but will not be available until late Q4 of 2023.

3.6. Autonomous 45

Studica Robotics, Release 1.0.0

46 Chapter 3. Programming

CHAPTER

FOUR

LABVIEW SETUP

4.1 Installing LabVIEW on VMX

LabVIEW for VMX requires a different SD-card image than that which comes standard on the VMX.

4.1.1 Downloading the image

Note: The image is a 3.34 GB download and can be downloaded here.

4.1.2 Flashing the image

Once downloaded a flashing software is required to flash the image to the SD Card. The recommended software to do
this is Etcher.

Important: It is highly recommended to use a Samsung 32GB or 64GB EVO Plus micro SD card.

To start flashing the SD card, first plug the SD card into your computer. Open Etcher, you will notice that it has
auto-detected the SD card. If it has not detected the SD card, you can manually select and find it.

Hit Select image and find the HG_WSI_X.X.X.X-XXX.zip file that was downloaded before.

Flash will now be available. Hit Flash to start flashing the SD card image to the SD card. Note this can take a while
depending on your computer.

After flashing, Etcher will automatically start to validate the flash to ensure that the flash was successful.

When complete, the SD card will be auto ejected and can be stuck directly back into the VMX.

47

https://studicalimited.sharepoint.com/:f:/s/SR-Resources/EgnfDGDd0rBJrMD_vu-JwIwBssQHTi8erH9I4Ab9AibqwQ?e=t9wGdE
https://www.balena.io/etcher

Studica Robotics, Release 1.0.0

48 Chapter 4. LabVIEW Setup

Studica Robotics, Release 1.0.0

4.1. Installing LabVIEW on VMX 49

Studica Robotics, Release 1.0.0

4.2 Installing LabVIEW on Computer

LabVIEW for VMX uses the 2020 LabVIEW Community Edition.

4.2.1 Downloading the installation package

Note: The LabVIEW download is 1.91GB and can be downloaded here

This download links to a specific version of LabVIEW tested to work with the image on the VMX.

4.2.2 Installation

Important: The LabVIEW Community Edition will only install on the C drive. Ensure that there is sufficient space
before installing.

1. Extract the contents of the ni-labview-2020-community-86_xxx.iso to an empty folder.

2. Right-click on the Install.exe and run as administrator.

3. Go through the license agreement, accept the conditions, and hit Next.

4. Click Next to install NI Package Manager.

50 Chapter 4. LabVIEW Setup

https://studicalimited.sharepoint.com/:f:/s/SR-Resources/Eu1Qlg2IJv5Gi3tTPLfo1isBg0wm-j4sFFxcjTMmeMhf1w?e=I0AoWt

Studica Robotics, Release 1.0.0

4.2. Installing LabVIEW on Computer 51

Studica Robotics, Release 1.0.0

5. After installation of NI Package Manager, install LabVIEW 2020. Hit Select All and then Next.

6. Go through more license agreements, accept the conditions, and hit Next.

7. There will be an option to Disable Windows Fast Startup. This is optional but unchecking Disable Windows
fast startup is recommended.

8. Click Next again.

9. Installation will take some time. Please be patient.

10. If a software update box pops up during the install, select No.

11. At the end of the installation, the activation process will pop up. Activation can be done by signing into your NI
Account and tying the community edition to your account. If you do not wish to activate now, just hit cancel.

12. Once complete, the computer will need to be restarted.

13. LabVIEW 2020 can now be found on the computer.

4.3 Installing the Toolkits

There are two toolkits required. HG_WSI_Toolkit and HG_WSI_Vision_Toolkit.

Both Toolkits are based on LabVIEW developed by Guangzhou High Genius for the World Skills Competition. It
provides different levels of driver functions and tools for various peripheral I/O of VMX-PI. It can not only access
advanced features but also carry out low-level programming. These ready-made driver function interfaces, in addition
to the standard analog input, analog output, digital I/O, I2C, SPI, PWM, encoder, and other interface driver functions.
It also provides a wide variety of tools to enhance playability significantly.

52 Chapter 4. LabVIEW Setup

Studica Robotics, Release 1.0.0

4.3. Installing the Toolkits 53

Studica Robotics, Release 1.0.0

54 Chapter 4. LabVIEW Setup

Studica Robotics, Release 1.0.0

4.3. Installing the Toolkits 55

Studica Robotics, Release 1.0.0

56 Chapter 4. LabVIEW Setup

Studica Robotics, Release 1.0.0

4.3.1 Downloading the Toolkit

The toolkits can be downloaded from here.

4.3.2 Installing

1. Open VI Package Manager (VIPM)

2. In VIPM hit File -> Open Package File(s).

3. Find the high_genius_lib_hg_wsi_toolkit_xxx.vip that was downloaded before.

4. A window will pop up asking Add to Library or Add to Library & Install. Select Add to
Library & Install.

5. LabVIEW will open if not already opened, and the toolkit will be installed. After installation, another window
will open, showing the results of the install. There should be a No Errors message stated under the Status
tab. Hit Finish when complete.

6. Repeat steps 2 to 5 for the high_genius_lib_hg_vision_toolkit_xxx.vip.

4.3. Installing the Toolkits 57

https://studicalimited.sharepoint.com/:f:/s/SR-Resources/Etg8OQpI4odBqKr6P2MMhsYBS8bJ-iNlqYwJPSjIBTBGWA?e=UiaFVb

Studica Robotics, Release 1.0.0

58 Chapter 4. LabVIEW Setup

Studica Robotics, Release 1.0.0

4.3. Installing the Toolkits 59

Studica Robotics, Release 1.0.0

4.4 Setting up the WiFi

WiFi and Ethernet are already set up on the LabVIEW image. However, sometimes the WiFi SSID and password must
be changed.

4.4.1 Download the WiFi Tool Project

The LabVIEW project for modifying the WiFi can be downloaded here.

4.4.2 Connecting to the WiFi

When the VMX is powered on, the default WiFi of the LabVIEW image will be active.

WiFi Settings

• SSID: high-genius

• PASS: high-genius

Connect to the WiFi by selecting high-genius and using high-genius as the password.

4.4.3 Changing the WiFi

1. Open LabVIEW 2020 Community Edition and select File -> Open Project.

60 Chapter 4. LabVIEW Setup

https://studicalimited.sharepoint.com/:f:/s/SR-Resources/EoNpuC5Lc-9KrmoRBr56GegBApdr93Yy120Kwe3Ip-VBdw?e=dVKDMm

Studica Robotics, Release 1.0.0

2. Select the HG_WSI_Tool xx.lvproj that was downloaded above.

3. Connect the project to the VMX Target by right-clicking on Raspberry Pi (172.16.0.1) and selecting
Connect.

4. A window will pop up showing the project trying to establish a connection.

5. The tiny green dot next to the Raspberry Pi (172.16.0.1) should now be bright green.

4.4. Setting up the WiFi 61

Studica Robotics, Release 1.0.0

6. Click on the plus next to the Raspberry Pi (172.16.0.1) and double click on WIFI Setup.vi.

7. The WiFi Setup vi will open up.

8. Change the Name and Password to what is required for you.

Important: The Name and Password must be more 8 digits.

Here the Name / SSID will be set to StudicaLabVIEW, and the password will be set to
password.

9. Select the Restart after final? push button.

This will reboot the VMX after the WiFi has been set.

10. Hit the run button to execute the change.

11. A window will pop up saying the connection has been lost. Hit ok.

12. Checking the WiFi again, we can see that the change has occurred.

13. To check that everything is still working, repeat steps 3 to 5 to check that the project can still connect to the
VMX.

62 Chapter 4. LabVIEW Setup

Studica Robotics, Release 1.0.0

4.4. Setting up the WiFi 63

Studica Robotics, Release 1.0.0

64 Chapter 4. LabVIEW Setup

CHAPTER

FIVE

LABVIEW TOOLKIT

5.1 High Genius Toolkit

The High Genius Toolkit or HG_WSI_Toolkit is the LabVIEW toolkit to interact with all the inputs and outputs of
the VMX. This includes sensors, pushbuttons, LEDs, motor control, and human interaction with joysticks.

The toolkit has three main sections.

5.1.1 Joystick

The joystick library takes the joystick data from the computer and sends it over UDP(WiFi) to the robot to be driven
around using a joystick.

There is two vis in the joystick library.

1. joystick

2. Robot-joystick

Table 1: Description of Joystick
vi attributes
joystick gets placed on a vi that runs on the computer
Robot-joystick gets placed in the main vi loop for the robot

Note: These vis have no inputs or outputs. They should just be placed in the main loops on the computer and robot.

65

Studica Robotics, Release 1.0.0

5.1.2 SubVIs

The SubVIs are some basic and device management functions.

There is four vis in the SubVIs library.

1. Init

2. Reset

3. Update VMX Data

4. Delay with Stop

Table 2: Description of SubVIs
vi attributes
Init Global initialization
Reset Return to original state
Update VMX Data Terminal communication
Delay with Stop Delay Time

Init, Reset, and Update VMX Data are all simple function calls with error inputs and error outputs.

Delay with Stop has error inputs and error outputs``and includes an input for delay
time in ``(ms).

66 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

5.1.3 VMX Library

Hint: All example images can be dragged and dropped into LabVIEW.

The VMX Library holds all the classes and underlying functions in the toolkit.

The Library has two simple functions and ten seperate sections contating specifc code for those functions.

Table 3: Description of Simple Functions
vi attributes
Create ID Creates a port
Delete ID Deletes a port

Note: Example use of the Create ID and Delete ID will be shown in the sections below.

The ten seperate specifc sections are

Digital Input and Output

Handles the Digital inputs and outputs on the VMX.

Important: If using the High-Current Digital I/O Bus, it can only be configured as all inputs or all outputs
(default).

Table 4: Description of Digital Input and Output
vi Attributes
Digital Input and Output Digital signal initialization
Read Digital signal reading
Write Digital signal writing

5.1. High Genius Toolkit 67

Studica Robotics, Release 1.0.0

Digital Input and Output (vi)

Is a class that contains the code for reading and writing to the digital I/O bus. Has only a HG_LIB output.

Read

A vi that allows for reading the digital state of the input pin specified by the Create ID vi.

Table 5: Inputs and Outputs
Name I/O Attribute
Digital Input and Output in Input The input cluster from Create ID
error in (no error) Input The error input cluster
Digital Input and Output out Output The output cluster to go to Delete ID
Boolean Output The boolean value read on the digital pin
error out Output The error output cluster

Write

A vi that allows for writing a high or low to the output pin specified by the Create ID vi.

Table 6: Inputs and Outputs
Name I/O Attribute
Digital Input and Output in Input The input cluster from Create ID
Control Input The boolean value to write to the digital pin
error in (no error) Input The error input cluster
Digital Input and Output out Output The output cluster to go to Delete ID
error out Output The error output cluster

68 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Digital Output Example

This example will turn on an LED connected to digital port 12 on the VMX.

Digital Input Example

This example will read a digital signal from a Pushbutton connected to digital port 11 on the VMX.

5.1. High Genius Toolkit 69

Studica Robotics, Release 1.0.0

Analog Input

Handles the analog inputs of the VMX.

Table 7: Description of Digital Input and Output
vi Attributes
Analog In Analog signal initialization
Read Analog signal reading

Analog In

Is a class that contains the code for reading the analog bus. Has only a HG_LIB output.

Read

A vi that allows for reading the analog value of the input pin specified by the Create ID vi.

Table 8: Inputs and Outputs
Name I/O Attribute
Analog In in Input The input cluster from Create ID
error in (no error) Input The error input cluster
Analog In out Output The output cluster to go to Delete ID
Data Output The raw value from the ADC
IR Output The converted value displaying distance in mm
error out Output The error output cluster

70 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Analog Input Example

This example will read an analog signal from a Sharp IR Sensor connected to analog port 0 (Digital port 22) on the
VMX.

Titan Encoder

Handles the Encoder ports on the Titan.

Note: While the Titan Encoder inputs are accurate on the Titan, with the CAN bus propagation delay, there will be a
delay between the actual count and the count read on the VMX. If you require immediate counts plug your encoders
into the FlexDIO ports directly on the VMX.

Table 9: Description of TitanENC
vi Attributes
Encoder Titan Encoder initialization
Read Titan Encoder reading
Read RPM Titan Encoder rpm reading
Reset Titan Encoder reset

5.1. High Genius Toolkit 71

Studica Robotics, Release 1.0.0

TitanENC

Is a class that contains the code for reading the encoder ports on the Titan. Has only a HG_LIB output.

Read

A vi that allows for reading the encoder count from the port specified by the Create ID vi.

Table 10: Inputs and Outputs
Name I/O Attribute
TitanENC in Input The input cluster from Create ID
error in (no error) Input The error input cluster
TitanENC out Output The output cluster to go to Delete ID
ENC Output The raw encoder count
ENC/dt Output The delta change in encoder count
error out Output The error output cluster

Read_RPM

A vi that allows for reading the encoder rpm count from the port specified by the Create ID vi.

Table 11: Inputs and Outputs
Name I/O Attribute
TitanENC in Input The input cluster from Create ID
error in (no error) Input The error input cluster
TitanENC out Output The output cluster to go to Delete ID
rpm Output The rpm of the motor reported by the Titan
error out Output The error output cluster

72 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Reset

A vi that allows for resetting the encoder count from the port specified by the Create ID vi.

Table 12: Inputs and Outputs
Name I/O Attribute
TitanENC in Input The input cluster from Create ID
error in (no error) Input The error input cluster
TitanENC out Output The output cluster to go to Delete ID
error out Output The error output cluster

Encoder Read Example

This example reads the encoder count on Titan Encoder port 0.

5.1. High Genius Toolkit 73

Studica Robotics, Release 1.0.0

Encoder Read_RPM Example

This example reads the encoder rpm on Titan Encoder port 0.

Encoder Reset Example

This example resets the encoder count on Titan Encoder port 0.

74 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Pulse / Ultrasonic

Handles the pulse of the Ultrasonic sensor.

Table 13: Description of Pulse
vi Attributes
Pulse Pulse initialization
Pulse Pulse output

Pulse Init

Is a class that contains the code for sending out the Ultrasonic pulse on the VMX. Has only a HG_LIB output.

Pulse Output

A vi that allows for sending out the Ultrasonic pulse on the port specified by the Create ID vi.

Table 14: Inputs and Outputs
Name I/O Attribute
Pulse in Input The input cluster from Create ID
Pulse Input The pulse to set
error in (no error) Input The error input cluster
Pulse out Output The output cluster to go to Delete ID
error out Output The error output cluster

5.1. High Genius Toolkit 75

Studica Robotics, Release 1.0.0

Ultrasonic Example

Note: This example requires Pulse and ISQ.

This example will Pulse the Ultrasonic sensor on digital port 12 and receive the echo on digital port 8 then calulate the
distance.

Interupt Status Queue / Ultrasonic

Handles the echo of the Ultrasonic sensor.

Table 15: Description of ISQ
vi Attributes
ISQ ISQ initialization
Read ISQ reading

76 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Pulse Init

Is a class that contains the code for the return pulse of the Ultrasonic pulse on the VMX. Has only a HG_LIB output.

Pulse Output

A vi that allows for collecting the return pulse of the Ultrasonic pulse on the port specified by the Create ID vi.

Table 16: Inputs and Outputs
Name I/O Attribute
ISQ in Input The input cluster from Create ID
error in (no error) Input The error input cluster
ISQ out Output The output cluster to go to Delete ID
PING Output The distance calculated by the ultrasonic sensor in mm
error out Output The error output cluster

Ultrasonic Example

Note: This example requires Pulse and ISQ.

This example will Pulse the Ultrasonic sensor on digital port 12 and receive the echo on digital port 8 then calulate the
distance.

VMX Encoder

Handles the Encoder ports on the VMX. There are five encoder ports on the VMX.

1. FlexDIO 0,1

2. FlexDIO 2,3

3. FlexDIO 4,5

4. FlexDIO 6,7

5. FlexDIO 8,9 (LabVIEW currently does not use this one)

5.1. High Genius Toolkit 77

Studica Robotics, Release 1.0.0

78 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Table 17: Description of VMX Encoder
vi Attributes
Encoder Encoder initialization
Read Encoder reading
Reset Encoder reset

Encoder

Is a class that contains the code for reading the encoder ports on the VMX. Has only a HG_LIB output.

Read

A vi that allows for reading the encoder count from the port specified by the Create ID vi.

Table 18: Inputs and Outputs
Name I/O Attribute
Encoder in Input The input cluster from Create ID
error in (no error) Input The error input cluster
Encoder out Output The output cluster to go to Delete ID
ENC Output The raw encoder count
ENC/dt Output The delta change in encoder count
error out Output The error output cluster

Reset

A vi that allows for resetting the encoder count from the port specified by the Create ID vi.

5.1. High Genius Toolkit 79

Studica Robotics, Release 1.0.0

Table 19: Inputs and Outputs
Name I/O Attribute
Encoder in Input The input cluster from Create ID
error in (no error) Input The error input cluster
Encoder out Output The output cluster to go to Delete ID
error out Output The error output cluster

Encoder Read Example

This example reads the encoder count on Encoder port 0 FlexDIO 0,1.

Encoder Reset Example

This example resets the encoder count on Encoder port 0 FlexDIO 0,1.

80 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

CAN Bus

Handles the CAN bus communication on the VMX. Specifically used to control the speed of a motor on the Titan.

Table 20: Description of CAN
vi Attributes
CAN CAN bus initialization
Write CAN bus writing

CAN

Is a class that contains the code for setting the motor speed on the Titan using the CAN bus on the VMX. Has only a
HG_LIB output.

Read

A vi that allows for setting the motor speed from the port specified by the Create ID vi.

Table 21: Inputs and Outputs
Name I/O Attribute
CAN in Input The input cluster from Create ID
PWM Input Motor to control
Duty Cycle Input Speed to set the motor at
INA Input One of the Directional registers for motor direction
INB Input One of the Directional registers for motor direction
error in (no error) Input The error input cluster
CAN out Output The output cluster to go to Delete ID
error out Output The error output cluster

5.1. High Genius Toolkit 81

Studica Robotics, Release 1.0.0

CAN Example

This example controls M0 on the Titan.

PWM

Handles the PWM outputs on the VMX.

Table 22: Description of PWM
vi Attributes
PWM PWM initialization
Write PWM writing

PWM (vi)

Is a class that contains the code for setting the PWM value on the PWM ports on the VMX. Has only a HG_LIB
output.

82 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

Write

A vi that allows for writing the PWM value to the port specified by the Create ID vi.

Table 23: Inputs and Outputs
Name I/O Attribute
PWM in Input The input cluster from Create ID
PWM Input The duty cycle to set the PWM to
error in (no error) Input The error input cluster
PWM out Output The output cluster to go to Delete ID
error out Output The error output cluster

PWM Example

This example shows the writing of a PWM value to a Servo on digital port 14 to make it move.

IMU / NavX

Handles the IMU data from the internal NavX of the VMX.

Table 24: Description of IMU
vi Attributes
IMU IMU initialization
Read IMU reading
Reset Yaw IMU reset

5.1. High Genius Toolkit 83

Studica Robotics, Release 1.0.0

IMU

Is a class that contains the code for reading the imu data on the VMX. Has only a HG_LIB output.

Read

A vi that allows for reading of the imu data on the port specified by the Create ID vi.

Table 25: Inputs and Outputs
Name I/O Attribute
IMU in Input The input cluster from Create ID
Initialize? (F) Input Initialize the imu or not, default false
error in (no error) Input The error input cluster
Pulse out Output The output cluster to go to Delete ID
IMU Output The output cluster with YAW, PITCH, ROLL
YAW(rad) Output The YAW value in radians
error out Output The error output cluster

Reset Yaw

A vi that allows for resetting of the imu data on the port specified by the Create ID vi.

Table 26: Inputs and Outputs
Name I/O Attribute
IMU in Input The input cluster from Create ID
error in (no error) Input The error input cluster
IMU out Output The output cluster to go to Delete ID
error out Output The error output cluster

84 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

IMU Read Example

This example shows the reading of the imu data.

IMU Reset Example

This example shows the resetting of the imu data.

5.1. High Genius Toolkit 85

Studica Robotics, Release 1.0.0

IIC / Cobra

Handles the IIC communication to the external ADC connected to the Cobra sensor.

Table 27: Description of IIC
vi Attributes
IIC IIC initialization
Read IIC reading

IIC

Is a class that contains the code for reading the Cobra on the VMX. Has only a HG_LIB output.

Read

A vi that allows for reading of the Cobra on the port specified by the Create ID vi.

Table 28: Inputs and Outputs
Name I/O Attribute
IIC in Input The input cluster from Create ID
error in (no error) Input The error input cluster
IIC out Output The output cluster to go to Delete ID
QTI Output An array with all four values of the Cobra
error out Output The error output cluster

86 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

IIC Read Example

This example reads the values on the Cobra.

5.1. High Genius Toolkit 87

Studica Robotics, Release 1.0.0

LabVIEW VMX-Library Available Pins

Table 29: Inputs and Outputs
Function LabVIEW Inter-

face
VMX Interface

ENC 0 FlexDIO 0,1
ENC 1 FlexDIO 2,3
ENC 2 FlexDIO 4,5
ENC 3 FlexDIO 6,7
IMU 0
AI 22 22
AI 23 23
AI 24 24
AI 25 25
CAN 2 CAN
PWM 14 14
PWM 15 15
PWM 16 16
PWM 17 17
PWM 18 18
Pulse 12 12
Pulse 13 13
ISQ 8 8
ISQ 10 10
IIC 0 IIC
DO 19 19
DO 20 20
DO 21 21
DI 9 9
DI 11 11

Table 30: Inputs from Titan
Function LabVIEW Interface
M0 Limit High 0
M0 Limit Low 1
M1 Limit High 2
M1 Limit Low 3
M2 Limit High 4
M2 Limit Low 5
M3 Limit High 6
M3 Limit Low 7
M0 Encoder 0
M1 Encoder 1
M2 Encoder 2
M3 Encoder 3

88 Chapter 5. LabVIEW Toolkit

Studica Robotics, Release 1.0.0

5.2 High Genius Vision Toolkit

5.2. High Genius Vision Toolkit 89

Studica Robotics, Release 1.0.0

90 Chapter 5. LabVIEW Toolkit

CHAPTER

SIX

USING LABVIEW

This section will go over how to use LabVIEW for VMX and deploying code to the VMX.

6.1 Creating a LabVIEW Project

Creating a LabVIEW for VMX project is very easy and quick to do.

1. Open LabVIEW 2020 Community Edition

2. Hit Create Project

3. Select Blank Project then hit Finish

4. A Blank Project should now pop up

5. Save the project to a location of your choice

6. Right-click on Your Project Name.lvproj and select New -> Targets and Devices...

7. Under Targets and Devices, select New target or device, then under Targets and Device Types, select
the drop-down for LINX and select the Raspberry Pi 2 B. Hit OK when done.

8. Save the project, and the project is now wholly created.

91

Studica Robotics, Release 1.0.0

6.2 Connecting to the VMX

For LabVIEW for VMX, there are two ways to connect to the VMX.

1. Ethernet with the IP ADDRESS 172.22.11.2

2. WiFi with the IP ADDRESS 172.16.0.1

To set the correct IP ADDRESS right click on the Raspberry Pi 2 B (0.0.0.0) target and select
Properties

In the IP Address / DNS Name box, put either the Ethernet or WiFi IP Address and hit ok.

Note: In this case, the WiFi address was used.

The IP Address should now be correctly shown in the Target Title.

To test the connection, connect to the VMX in the way specified in the IP Address chosen. In this case, WiFi was
selected so we would connect to the VMX over WiFi.

Right-click on the Raspberry Pi 2 B (172.16.0.1) target and select Connect

A window will pop up to display the connection information.

The connection should now be complete, and the little green indicator next to the Raspberry Pi logo should be
illuminated. This signals a connection has been established with the VMX.

92 Chapter 6. Using LabVIEW

Studica Robotics, Release 1.0.0

6.2. Connecting to the VMX 93

Studica Robotics, Release 1.0.0

94 Chapter 6. Using LabVIEW

Studica Robotics, Release 1.0.0

6.2. Connecting to the VMX 95

Studica Robotics, Release 1.0.0

96 Chapter 6. Using LabVIEW

Studica Robotics, Release 1.0.0

6.2. Connecting to the VMX 97

Studica Robotics, Release 1.0.0

6.3 Training Platform

The following code is the LabVIEW project for the VMX Training Platform.

With the project created and the project connected to the VMX, code can now be written.

6.3.1 Creating the Main vi

Right click on the Raspberry Pi 2 B (172.16.0.1) target and select New -> VI

Two new windows will pop up, Front Panel and Block Diagram.

On the Front Panel (Grey window), hit File -> Save As and save the vi as Main.vi

98 Chapter 6. Using LabVIEW

https://www.studica.co/worldskills-mobile-robotics-workshop-kit-2021

Studica Robotics, Release 1.0.0

6.3.2 Adding Titan Code

Referring back to the Titan Code to move the motor in the toolkit docs page. Adding the code for M1 on the Titan
should be very simple.

Note: In the docs page for the toolkit, we use M0, but here it needs to be changed to M1.

6.3.3 Adding Servo Code

Referring to the Servo Code to move the servo in the toolkit docs page, the code can be added to our motor code easily.

The servo will be connected to digital port 14.

6.3.4 Adding Sharp IR Code

Referring to the Analog Input Code to read the Sharp IR Sensor in the toolkit docs page, the code can be added.

The Sharp IR sensor will be on port 22 of the VMX.

6.3. Training Platform 99

https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/can.html
https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/pwm.html
https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/analog-in.html

Studica Robotics, Release 1.0.0

100 Chapter 6. Using LabVIEW

Studica Robotics, Release 1.0.0

6.3.5 Adding Ultrasonic Code

Referring back to the Pulse Code & ISQ Code to read the Ultrasonic Sensor in the toolkit docs page, the code can be
added.

The Ultrasonic sensor will use digital port 12 for the pulse and digital port 8 for the echo.

6.3.6 Add Cobra Code

Referring back to the IIC Code for the Cobra, the values can be easily read.

The Cobra is plugged into the ADC, which is plugged into the IIC port on the VMX.

6.3. Training Platform 101

https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/pulse.html
https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/isq.html
https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/iic.html

Studica Robotics, Release 1.0.0

6.3.7 Adding NavX Code

Referring back to the IMU Code for the internal NavX, the values can be easily read.

The NavX is internal and requires no wire connection.

6.3.8 Adding an LED Output

Referring back to the Digital Output Code an LED can be turned on.

For this example, the loop counter will be used to turn the light on digital port 21 on and off every 500 ms.

6.3.9 Adding a Digital Input

Referring back to the Digital Input Code a push button can be read.

Here a pushbutton in a Normally Open configuration is used to turn an indicator on the front panel on and off.

Note: The VMX has internal pullups for inputs.

102 Chapter 6. Using LabVIEW

https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/imu.html
https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/digital-input-and-output.html
https://docs.wsr.studica.com/en/latest/docs/labview/toolkit/highgenius/vmx-library/digital-input-and-output.html

Studica Robotics, Release 1.0.0

6.3. Training Platform 103

Studica Robotics, Release 1.0.0

6.4 Full Code Example

Below is all the code above in one image that can be dragged into LabVIEW.

Note: The image might have to be saved first then dragged in.

6.5 Deploying Code to the VMX

To deploy code to the VMX, ensure that there is a connection first. See Connecting to the VMX if no connection is
present.

In the upper left-hand corner, there will be an arrow facing right.

Press the arrow, and the code will deploy to the VMX.

Note: If you are connected in LabVIEW, the Front Panel will be usable for diagnosing functions and seeing values.

Important: Deploying sets the current code as the startup code. Meaning this code will run automatically when the
VMX is powered on again.

104 Chapter 6. Using LabVIEW

https://docs.wsr.studica.com/en/latest/docs/labview/using-labview/connecting-to-the-vmx.html

Studica Robotics, Release 1.0.0

6.5. Deploying Code to the VMX 105

Studica Robotics, Release 1.0.0

106 Chapter 6. Using LabVIEW

CHAPTER

SEVEN

GETTING STARTED

Welcome to the ROS library for the Studica robot platform, allowing ROS functionality for a variety of Studica’s
hardware. Compared to the current codebase this directly uses the VMXPi HAL, more information on the VMXPi
HAL API can be found at VMX-pi C++ HAL.

To see indepth examples of the VMXPi HAL, your RPi has a lot in the /usr/local/src/vmxpi/ directory.

7.1 ROS Setup

7.1.1 Installing ROS Manually

Open a terminal window and run the installNoetic.sh script to install ROS Noetic. For more information, visit
ROS Noetic.

./installNoetic.sh

Note: Running the installNoetic.sh script takes approximately 3 hours, this includes most of the required
tools and dependencies needed for the ROS Package, however this does not include catkin-tools.

To install the required catkin-tools, run the following command:

sudo apt install python3-catkin-tools python3-osrf-pycommon

7.1.2 Using the ROS Image

To get started, navigate to the ROS Image and download the ROSImage.zip file. Unzip the downloaded zip file and
refer to the section on flashing image files to an SD card here.

Note: The ROSImage file includes all the required tools and dependencies needed for the ROS Package, however
this will require approximately 4.8Gb of disk space.

Insert the SD card into the VMX-pi and continue with the instructions below.

107

https://www.kauailabs.com/public_files/vmx-pi/apidocs/hal_cpp/html/class_v_m_x_pi.html
http://wiki.ros.org/noetic/Installation/Debian
https://studicalimited.sharepoint.com/:f:/s/SR-Resources/EsU13cdnTWNFkZK6vXhLDhEBh7I-i7Ov-6tFDjWFbTGjOg?e=dBrPiC
https://docs.wsr.studica.com/en/latest/docs/VMX/os-image.html

Studica Robotics, Release 1.0.0

Creating a ROS Workspace

1. Create a directory catkin_ws by running mkdir -p ~/catkin_ws/src, preferrably in /home/pi.

mkdir -p ~/catkin_ws/src

2. Then cd catkin_ws and run catkin init to initialize the workspace environment.

cd catkin_ws
catkin init

3. Next, run catkin build.

catkin build

This will create two additional build and devel folders in the catkin_ws directory.

4. Now clone the VMX-ROS repo into the src folder.

git clone https://github.com/studica/VMX-ROS.git

5. Lastly, run catkin build once again to build the newly cloned repository in the catkin workspace.

catkin build -cs

108 Chapter 7. Getting Started

Studica Robotics, Release 1.0.0

7.2 Building ROS

7.2.1 CMakeLists.txt

The CMakeLists.txt file is the input to CMake, which is a system that manages the build process for ROS in a
compiler-independent manner. To access this software, CMakeLists.txt configuration files are created that detail how
the code should be built, these in turn generate the standard makefiles for compiling a program on Linux operating
systems like Rasbian for the VMX-pi. In the catkin_ws, the CMakeLists.txt used is a standard CMakeLists.txt file
with a few more restrictions.

Structure

1. Required CMake Version (cmake_minimum_required)

2. Package Name (project())

3. Find other CMake/Catkin packages needed for build (find_package())

4. Message/Service/Action Generators (add_message_files(), add_service_files(),
add_action_files())

5. Invoke message/service/action generation (generate_messages())

6. Specify package build info export (catkin_package())

7. Libraries/Executables to build (add_library()/add_executable()/target_link_libraries())

Writing a CMakeLists.txt file

For the purposes of this demonstration we will use the CMakeLists.txt file for the main vmxpi_ros_bringup
package for reference.

1 cmake_minimum_required(VERSION 3.0.2)
2 project(vmxpi_ros_bringup)
3

4 ## Compile as C++11, supported in ROS Kinetic and newer
5 # add_compile_options(-std=c++11)
6

7 ## Find catkin macros and libraries
8 ## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
9 ## is used, also find other catkin packages

10 find_package(catkin REQUIRED COMPONENTS
11 roscpp
12 rospy
13 dynamic_reconfigure
14 vmxpi_ros
15 vmxpi_ros_titan
16 vmxpi_ros_cobra
17 vmxpi_ros_sharp
18 vmxpi_ros_ultrasonic
19 vmxpi_ros_navx
20 vmxpi_ros_servo
21 vmxpi_ros_io
22

23)
24

(continues on next page)

7.2. Building ROS 109

Studica Robotics, Release 1.0.0

(continued from previous page)

25

26 ###################################
27 ## catkin specific configuration ##
28 ###################################
29 ## The catkin_package macro generates cmake config files for your package
30 ## Declare things to be passed to dependent projects
31 ## INCLUDE_DIRS: uncomment this if your package contains header files
32 ## LIBRARIES: libraries you create in this project that dependent projects also need
33 ## CATKIN_DEPENDS: catkin_packages dependent projects also need
34 ## DEPENDS: system dependencies of this project that dependent projects also need
35 catkin_package(
36 # INCLUDE_DIRS include
37 # LIBRARIES vmxpi_ros_bringup
38 # CATKIN_DEPENDS roscpp rospy
39 # DEPENDS system_lib
40)
41

42 ###########
43 ## Build ##
44 ###########
45

46 ## Specify additional locations of header files
47 ## Your package locations should be listed before other locations
48 include_directories(
49 include
50 ${catkin_INCLUDE_DIRS}
51 ../vmxpi_ros_titan/include
52 ../vmxpi_ros_navx/include
53 ../vmxpi_ros_sensors/vmxpi_ros_cobra/include
54 ../vmxpi_ros_sensors/vmxpi_ros_sharp/include
55 ../vmxpi_ros_sensors/vmxpi_ros_ultrasonic/include
56 ../vmxpi_ros_servo/include
57 ../vmxpi_ros_utils/include
58 ../vmxpi_ros_io/include
59 ../vmxpi_ros/include
60 /usr/local/include/vmxpi
61)
62

63 add_library(vmxpi_hal SHARED IMPORTED GLOBAL)
64 set_target_properties(vmxpi_hal PROPERTIES IMPORTED_LOCATION "/usr/local/lib/vmxpi/

→˓libvmxpi_hal_cpp.so")
65

66 add_library(navx_ros_wrapper SHARED IMPORTED GLOBAL)
67 # set_target_properties(navx_ros_wrapper PROPERTIES IMPORTED_LOCATION "/home/pi/

→˓catkin_ws/devel/lib/libnavx_ros_wrapper.so")
68 set_target_properties(navx_ros_wrapper PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_

→˓DIR}/../../../devel/lib/libnavx_ros_wrapper.so)
69

70 add_library(titandriver_ros_wrapper SHARED IMPORTED GLOBAL)
71 # set_target_properties(titandriver_ros_wrapper PROPERTIES IMPORTED_LOCATION "/home/

→˓pi/catkin_ws/devel/lib/libtitandriver_ros_wrapper.so")
72 set_target_properties(titandriver_ros_wrapper PROPERTIES IMPORTED_LOCATION ${PROJECT_

→˓SOURCE_DIR}/../../../devel/lib/libtitandriver_ros_wrapper.so)
73

74 add_library(titandriver_ros SHARED IMPORTED GLOBAL)
75 # set_target_properties(titandriver_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_

→˓ws/devel/lib/libtitandriver_ros.so")
(continues on next page)

110 Chapter 7. Getting Started

Studica Robotics, Release 1.0.0

(continued from previous page)

76 set_target_properties(titandriver_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_
→˓DIR}/../../../devel/lib/libtitandriver_ros.so)

77

78 add_library(cobra_ros SHARED IMPORTED GLOBAL)
79 set_target_properties(cobra_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_DIR}/../

→˓../../devel/lib/libcobra_ros.so)
80

81 add_library(sharp_ros SHARED IMPORTED GLOBAL)
82 # set_target_properties(sharp_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_ws/

→˓devel/lib/libsharp_ros.so")
83 set_target_properties(sharp_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_DIR}/../

→˓../../devel/lib/libsharp_ros.so)
84

85 add_library(servo_ros SHARED IMPORTED GLOBAL)
86 # set_target_properties(servo_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_ws/

→˓devel/lib/libservo_ros.so")
87 set_target_properties(servo_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_DIR}/../

→˓../../devel/lib/libservo_ros.so)
88

89 add_library(ultrasonic_ros SHARED IMPORTED GLOBAL)
90 # set_target_properties(ultrasonic_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_

→˓ws/devel/lib/libultrasonic_ros.so")
91 set_target_properties(ultrasonic_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_

→˓DIR}/../../../devel/lib/libultrasonic_ros.so)
92

93 add_library(iowd_ros SHARED IMPORTED GLOBAL)
94 # set_target_properties(iowd_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_ws/

→˓devel/lib/libiowd_ros.so")
95 set_target_properties(iowd_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_DIR}/../.

→˓./../devel/lib/libiowd_ros.so)
96

97 add_library(digitalin_ros SHARED IMPORTED GLOBAL)
98 # set_target_properties(digitalin_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_

→˓ws/devel/lib/libdigitalin_ros.so")
99 set_target_properties(digitalin_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_DIR}

→˓/../../../devel/lib/libdigitalin_ros.so)
100

101 add_library(digitalout_ros SHARED IMPORTED GLOBAL)
102 # set_target_properties(digitalout_ros PROPERTIES IMPORTED_LOCATION "/home/pi/catkin_

→˓ws/devel/lib/libdigitalout_ros.so")
103 set_target_properties(digitalout_ros PROPERTIES IMPORTED_LOCATION ${PROJECT_SOURCE_

→˓DIR}/../../../devel/lib/libdigitalout_ros.so)
104

105 add_executable(test_node src/test_node.cpp)
106 target_link_libraries(test_node PRIVATE
107 vmxpi_hal
108 navx_ros_wrapper
109 titandriver_ros
110 titandriver_ros_wrapper
111 cobra_ros
112 sharp_ros
113 servo_ros
114 ultrasonic_ros
115 iowd_ros
116 digitalin_ros
117 digitalout_ros
118 ${catkin_LIBRARIES}

(continues on next page)

7.2. Building ROS 111

Studica Robotics, Release 1.0.0

(continued from previous page)

119

120)
121 add_dependencies(test_node
122 navx_ros_wrapper
123 titandriver_ros
124 titandriver_ros_wrapper
125 cobra_ros
126 sharp_ros
127 servo_ros
128 ultrasonic_ros
129 iowd_ros
130 digitalin_ros
131 digitalout_ros
132 ${PROJECT_NAME}_gencfg)
133

134

135 add_executable(main_node src/main.cpp)
136 target_link_libraries(main_node PRIVATE
137 vmxpi_hal
138 navx_ros_wrapper
139 titandriver_ros
140 titandriver_ros_wrapper
141 cobra_ros
142 sharp_ros
143 servo_ros
144 ultrasonic_ros
145 iowd_ros
146 digitalin_ros
147 digitalout_ros
148 ${catkin_LIBRARIES}
149)
150 add_dependencies(main_node
151 navx_ros_wrapper
152 titandriver_ros
153 titandriver_ros_wrapper
154 cobra_ros
155 sharp_ros
156 servo_ros
157 ultrasonic_ros
158 iowd_ros
159 digitalin_ros
160 digitalout_ros
161 ${PROJECT_NAME}_gencfg)

Explaining the File

1. Before starting any CMakeLists.txt file, the first thing to add is the version of CMake. Catkin requires version
2.8.3 or higher.

cmake_minimum_required(VERSION 3.0.2)

2. The next section is specifying the package name using the CMake project() function, here is where
the vmxpi_ros_bringup package is declared. In CMake, the project name can be referenced using the
${PROJECT_NAME} variable.

112 Chapter 7. Getting Started

Studica Robotics, Release 1.0.0

project(vmxpi_ros_bringup)

3. Using the CMake find_package() function, we specify the packages that the project needs to find before
building. catkin REQUIRED must be passed to this function, from the code-block below, there are other
dependencies added to this package such as roscpp, rospy, and the various other packages in Studica’s ROS
library needed for this wrapper package. Note, the “wet” packages must be turned into components of catkin
using the COMPONENTS argument.

find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
dynamic_reconfigure
vmxpi_ros
vmxpi_ros_titan
vmxpi_ros_cobra
vmxpi_ros_sharp
vmxpi_ros_ultrasonic
vmxpi_ros_navx
vmxpi_ros_servo
vmxpi_ros_io

)

When a package is found following the function call, this leads to the generation of environment variables that can be
utilized later in the CMake script. The environment variables indicate the locations of the headers and source files for
the packages, the libraries that the package depends on, as well as the path to those libraries. The naming convention
follows <PACKAGE NAME>_<PROPERTY>, for example:

• <NAME>_FOUND - Set to true if the library is found, otherwise false

• <NAME>_INCLUDE_DIRS or <NAME>_INCLUDES - The include paths exported by the package

• <NAME>_LIBRARIES or <NAME>_LIBS - The libraries exported by the package

Remember, catkin packages are not components of catkin, they must be specified as compnents using CMake’s com-
ponents feature to save time. Calling find_package() on catkin packages is beneficial since their files, paths, and
libraries are added as catkin_variables as mentioned earlier.

4. The catkin_package() macro generates cmake config files for your package. This is required to declare
things to be passed to dependent projects. Note, this function must be called before the add_library() or
add_executable().

catkin_package(
INCLUDE_DIRS include
LIBRARIES vmxpi_ros_bringup
CATKIN_DEPENDS roscpp rospy
DEPENDS system_lib
)

• INCLUDE_DIRS - The exported include paths (i.e. cflags) for the package

• LIBRARIES - The exported libraries from the project

• CATKIN_DEPENDS - Other catkin projects that this project depends on

• DEPENDS - Non-catkin CMake projects that this project depends on.

Uncommenting the lines in the code-block above, this indicates that exported headers go in the include folder of the
package. We know the ${PROJECT_NAME} variable is the value passed in the project() function from before,

7.2. Building ROS 113

Studica Robotics, Release 1.0.0

roscpp and rospy are packages needed in order to build/run this package, and finally the package depends on
system_lib.

5. Specify additional locations of header files, the current packages /include/ directory should be listed before
other /include locations.

include_directories(
include
${catkin_INCLUDE_DIRS}
../vmxpi_ros_titan/include
../vmxpi_ros_navx/include
../vmxpi_ros_sensors/vmxpi_ros_cobra/include
../vmxpi_ros_sensors/vmxpi_ros_sharp/include
../vmxpi_ros_sensors/vmxpi_ros_ultrasonic/include
../vmxpi_ros_servo/include
../vmxpi_ros_utils/include
../vmxpi_ros_io/include
../vmxpi_ros/include
/usr/local/include/vmxpi

)

6. The add_library() CMake function is used to specify libraries to build, the SHARED IMPORTED GLOBAL
arguments set the type of library to be created. For non-Windows platforms like Rasbian, the primary library
file for a SHARED library is the .so file, the GLOBAL option extends the scope of the target (vmxpi_hal) in
the directory it is created and beyond.

add_library(vmxpi_hal SHARED IMPORTED GLOBAL)

7. Imported targets are used to convert files outside of a CMake project into logical targets inside of the project.
The set_target_properties() function gives the ability to set the properties of the target depending
on the options passed after the target. Here, the imported location of the target is pointed to the imported
target libvmxpi_hal_cpp.so file created earlier via add_library() in /usr/local/lib/vmxpi/
libvmxpi_hal_cpp.so.

set_target_properties(vmxpi_hal PROPERTIES IMPORTED_LOCATION "/usr/local/lib/vmxpi/
→˓libvmxpi_hal_cpp.so")

8. Specify an executable target to be built with the add_executable() function.

add_executable(test_node src/test_node.cpp)

9. Set the libraries that an executable target links against using the target_link_libraries. The PRIVATE
option indicates that all the following will be used for the current target only, meaning the test_node target
is linked against the shared libraries (.so since Rasbian is Linux-based) of the other packages.

target_link_libraries(test_node PRIVATE
vmxpi_hal
navx_ros_wrapper
titandriver_ros
titandriver_ros_wrapper
cobra_ros
sharp_ros
servo_ros
ultrasonic_ros
iowd_ros
digitalin_ros
digitalout_ros
${catkin_LIBRARIES}

114 Chapter 7. Getting Started

Studica Robotics, Release 1.0.0

10. Add dependencies using add_dependencies() to the target (test_node) defined in the
add_executable() call prior, this is done for targets that depend on other targets that need mes-
sages, services, and actions to be built. Essentially, messages from other packages inside the catkin workspace
need a dependency added to their generation targets, this is often the case as one of the primary uses of ROS is
this message-passing aspect between packages.

add_dependencies(test_node
navx_ros_wrapper
titandriver_ros
titandriver_ros_wrapper
cobra_ros
sharp_ros
servo_ros
ultrasonic_ros
iowd_ros
digitalin_ros
digitalout_ros
${PROJECT_NAME}_gencfg)

11. The macros add_message_files(...), add_service_files(...), add_action_files(...
), generate_messages(...)were not included in the example for the vmxpi_ros_bringup package,
but the functions must come BEFORE the catkin_package() macro in this order:

find_package(catkin REQUIRED COMPONENTS ...)
add_message_files(...)
add_service_files(...)
add_action_files(...)
generate_messages(...)
catkin_package(...)

add_message_files(...), add_service_files(...), add_action_files(...) handle mes-
sages, services, and actions respectively, followed by a call to invoke generation:

generate_messages(...)

Note: It is important to adhere to the structure of the CMakeLists.txt file as outlined above. Refer to CMakeLists.txt
for more information.

Configuring CMakeLists.txt

The previous section analyzed the major sections of a CMakeLists.txt file, luckily most of the work is already
done when the repository is cloned. The main things to remember when it is time to build your programs are to
generate executables, set dependencies, and set libraries to link the target against. To do this, add the following lines
at the end of the vmxpi_ros_bringup CMakeLists.txt file:

add_executable(...)
target_link_libraries(...)
add_dependencies(...)

Note: The CMakeLists.txt file has already been configured to build the main_node executable with all the currently
available packages in Studica’s ROS library, hence you can simply begin writing your program in main.cpp.

7.2. Building ROS 115

http://wiki.ros.org/catkin/CMakeLists.txt

Studica Robotics, Release 1.0.0

7.3 Configuring the ROS Environment

1. Permanently source the setup.bash files by running the following:

echo "source /opt/ros/noetic/setup.bash" >> ~/.profile
echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
echo "source /home/pi/catkin_ws/devel/setup.bash" >> ~/.profile
echo "source /home/pi/catkin_ws/devel/setup.bash" >> ~/.bashrc

2. Close the terminal and open a new one.

3. Navigate to the work space cd catkin_ws/src

4. Change the name of the VMX-ROS folder to vmxpi_ros

mv /home/pi/catkin_ws/src/VMX-ROS/ /home/pi/catkin_ws/src/vmxpi_ros

5. To build the packages run catkin build -cs. Note, this may take a while as the command builds all the
packages in the catkin workspace.

catkin build -cs

116 Chapter 7. Getting Started

Studica Robotics, Release 1.0.0

Note: This process may take a couple minutes if running for the first time.

With everything built, you can begin running the node.

7.4 Running the Package

In a new terminal, run roscore

roscore

The following should appear:

... logging to /home/pi/.ros/log/634b1d0a-4664-11ec-90e3-dca63268e7bc/roslaunch-
→˓raspberrypi-18104.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://raspberrypi:38727/
ros_comm version 1.15.11

SUMMARY
========

PARAMETERS

* /rosdistro: noetic

* /rosversion: 1.15.11

NODES

auto-starting new master
process[master]: started with pid [18113]
ROS_MASTER_URI=http://raspberrypi:11311/

setting /run_id to 634b1d0a-4664-11ec-90e3-dca63268e7bc
process[rosout-1]: started with pid [18136]
started core service [/rosout]

roscore is the first command that should be run to allow for ROS nodes to communicate. The command essentially
prepares your system by launching the pre-requisite nodes and programs needed for a ROS system.

Tip: Run rosclean check to check the disk usage of ROS log files. If disk usage >1GB, run rosclean
purge to clear existing ROS log files.

2. In another terminal, run sudo su to run commands as root.

sudo su

Running a command with the sudo prefix is required for commands that require superuser privileges.

7.4. Running the Package 117

Studica Robotics, Release 1.0.0

Caution: Switching to the superuser (root) can be dangerous, it grants access to “super powers” like the ability
to modify or delete any file in any directory on the system, hence one should be careful with the commands run
under the root account.

3. As the root user run:

echo "source /opt/ros/noetic/setup.bash" >> ~/.profile
echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
echo "source /home/pi/catkin_ws/devel/setup.bash" >> ~/.profile
echo "source /home/pi/catkin_ws/devel/setup.bash" >> ~/.bashrc

4. Close the root terminal and reopen it. Navigate to cd catkin_ws/src and run sudo su once again.

cd catkin_ws/src
sudo su

5. Now, run the following command to start the nodes in the launch file.

roslaunch vmxpi_ros_bringup wrapper.launch

7.4.1 Configuring the Launch File

Navigate to the launch file directory in the file explorer and open the wrapper.launch file.

cd /home/pi/catkin_ws/src/vmxpi_ros/vmxpi_ros_bringup/launch
nano wrapper.launch

From the image above, there are three nodes in the xml launch file. The camera_node and the opencv_node are
both commented out using the xml syntax <!-- Comment -->. Remove these tags to have these nodes run when
the launch file is called, or add them when not in use to save resources.

Tip: Observe the resource usage by running htop.

118 Chapter 7. Getting Started

Studica Robotics, Release 1.0.0

7.4. Running the Package 119

Studica Robotics, Release 1.0.0

120 Chapter 7. Getting Started

CHAPTER

EIGHT

USING ROS

8.1 The ROS Package

8.1.1 What is ROS?

ROS (Robot Operating System) is an open-source collection of software frameworks for robot development, it allows
for functionalities such as low-level device control, message-passing between processes, and package management.
The tools and libraries available make it possible to build, write, and run code across multiple computers. The main
advantage of ROS is its peer-to-peer network, this allows for communication across multiple nodes and devices without
requiring an auxilliary server computer or server software. This means processes distributed across various machines
can interact using the ROS communication framework.

Why Noetic?

Essentially, a distribution (distro) is a set of ROS packages rolled up into a release, there are various distributions of
ROS each with different functionalities to suit the needs of different robots.

ROS Noetic is currently the final and latest version of ROS 1 available with an EOL date set for May 2025, this
means another distribution of the operating system will not be released for ROS 1. However, Noetic is an LTS release

121

Studica Robotics, Release 1.0.0

meaning it will have support throughout its lifetime though no major functionality will be added. Moreover, ROS 2
is only available on Ubuntu and not Raspbian, which is the official supported operating system for the Raspberry Pi.
Raspbian is required as the VMX-pi HAL Library for the Raspberry Pi only supports the operating system. Below is
a summary of distros released prior to ROS Noetic:

8.1.2 General Overview

Exchanging information with ROS can take many forms, whether it be asynchronously streaming data over topics, or
using ROS services via a request/response messaging system.

ROS Master

ROS master can be thought of as the main message-passing server that tracks the network addresses of all the
other nodes. It informs subscribers about nodes publishing on a particular topic in order for the subscriber and
publisher to establish a peer-to-peer connection. The nodes must know the location of ROS master on startup via
ROS_MASTER_URI, which is the enviroment variable responsible for this. Conveniently this is automatically set by
default when the ROSDISTRO(noetic) setup file is sourced. For more information on sourcing setup files, refer to the
Getting Started section.

122 Chapter 8. Using ROS

https://www.kauailabs.com/public_files/vmx-pi/apidocs/hal_cpp/html/index.html

Studica Robotics, Release 1.0.0

Subscribers and Publishers

Like previously mentioned, the subscribe/publish messaging model is one of the main ways ROS is used. For ex-
ample, let’s assume we have a camera on our robot and we want a way to read, process, and ouput the image feed
from the camera for navigation or object tracking. To begin, the nodes must register with ROS master, this is done
before the nodes can establish a peer-to-peer communication whith eachother before message-passing can occur. After
registering, the Camera Node will advertise the image data to a trivial topic called /image_feed while the Image
Processing Node will subscribe to /image_feed.

With Peer-to-Peer connection now established, its time for the Image Processing Node to process the incoming video
stream and output to another topic called /image/output_video.

Another subscriber can be written to view the video feed by writing a callback to the image output topic, however ROS
has a framework known as rqt with many plugins like rqt_image_view, that provide a GUI for displaying images
using image transport.

Note: Refer to the RQT section for more information on the rqt GUI and its plugins.

8.1. The ROS Package 123

Studica Robotics, Release 1.0.0

Services and Clients

Services/Clients are another way of passing messages, ROS services follow the basic request-response style remote
procedure call (RPCs). Any node can call a service, these are referred to as clients, services are useful when a quick
operation is desired. Similar to the subscriber/publisher, a ROS node provides a service under a string name that is
registered with ROS Master. For example let’s take a service, /set_motor_speed, to set a motor speed using this,
clients will send a request containing the desired motor speed value by calling the service and await an ensuing
response.

8.1.3 VMX-pi ROS Package

After following the steps in the Getting Started section, now you are ready to start using the ROS library for the Studica
Robot Platform. ROS functionality has been implemented for a variety of Studica’s hardware, refer to Studica’s Roscpp
API for more information on the classes and methods available. Below are the ROS pacakages:

The next sections will go over using the ROS package to write simple subscribers and publishers, as well as writing
simple services and clients to pass messages between nodes.

124 Chapter 8. Using ROS

Studica Robotics, Release 1.0.0

8.2 Subscribers and Publishers

8.2.1 Writing the Subscriber Node

For the purposes of this demonstration we will use the Sharp IR sensor’s ROS Library for reference.

1 //Include the Sharp Library
2 #include "Sharp_ros.h"
3

4

5 double sharp_dist;
6

7 // Returns the distance value reported by the Sharp IR sensor
8 void sharp_dist_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 sharp_dist = msg->data;
11 }
12

13 int main(int argc, char **argv)
14 {
15

16 ros::init(argc, argv, "sharp_sub_node");
17

18 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

19

20 ros::Subsriber sharpDist_sub;
21

22 // Subscribing to Sharp distance topic to access the distance data
23 sharpDist_sub = nh.subscribe("channel/22/sharp_ir/dist", 1, sharp_dist_callback);
24

25 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

26

(continues on next page)

8.2. Subscribers and Publishers 125

Studica Robotics, Release 1.0.0

(continued from previous page)

27 return 0;
28 }

Explaining the Code

Let’s go over each section of the code.

#include "Sharp_ros.h"

Sharp_ros.h is the header for Studica’s Sharp sensor ROS library.

double sharp_dist;

This is the variable that accepts the sensor data from the messages being published on the channel/22/
sharp_ir/dist topic.

void sharp_dist_callback(const std_msgs::Float32::ConstPtr& msg)
{

sharp_dist = msg->data;
}

This is the callback fuction that will get called when a new message has arrived on the channel/22/sharp_ir/
dist topic. This message in particular is a Float32 type passed on a boost shared_ptr.

ros::init(argc, argv, "sharp_sub_node");

Used to initialize ROS and must be called before using any other parts of the ROS system. Its parameters must be
argc and argv such that it can perform any ROS arguments or name remappings provided in the command line. The
name of the node is also specified here.

ros::NodeHandle nh;

Internal reference to the ROS node that the program will use to interact with the ROS system.

ros::Subsriber sharpDist_sub;

Constructs a ROS subscriber object called sharpDist_sub.

sharpDist_sub = nh.subscribe("channel/22/sharp_ir/dist", 1, sharp_dist_callback);

This line calls the subscribe() method, this is used to inform the ROS Master node that we want to accept mes-
sages being streamed on a certain topic. The particular topic is declared in the first argument, in this case channel/
22/sharp_ir/dist. The second argument is where we set the capacity of the queue, this is important for cases
where messages are being sent faster than they are being recieved and processed. 1 is the queue size, meaning if the
size of the queue is greater than one, old messages will start being discarded as new ones arrive. The final parameter
passed is the callback function that gets called whenever a new message arrives on the topic. The sharpDist_sub
object is maintained until all copies of it are destroyed, in this case the channel/22/sharp_ir/dist topic will
be automatically unsubcribed from.

Note: ROS Master acts as a registry where nodes establish peer-to-peer connections in order to pass messages, it
keeps track of what nodes are publishing and nodes that are subscribing.

126 Chapter 8. Using ROS

https://www.boost.org/doc/libs/1_37_0/libs/smart_ptr/shared_ptr.htm

Studica Robotics, Release 1.0.0

ros::spin();

ros::spin() will enter a loop, pumping callbacks to obtain the latest sensor data.

8.2.2 Writing the Publisher Node

Important: For using Studica’s ROS Library, publishers have already been implemented where relevant sensor
information has been organized into topics. This section is for creating a publisher node from scratch.

For the purposes of this demonstration we will use the Sharp IR sensor’s ROS Library for reference.

1 //Include the Sharp Library
2 #include "Sharp_ros.h"
3

4 int main(int argc, char* argv[])
5 {
6 ros::init(argc, argv, "sharp_pub_node");
7

8 ros::NodeHandle nh;
9

10 ros::Publisher sharp_dist_pub;
11

12 sharp_dist_pub = nh->advertise<std_msgs::Float32>("channel/22/sharp_ir/dist", 1);
13

14 ros::Rate loop_rate(50);
15 while (ros::ok()) {
16 std_msgs::Float32 msg;
17

18 msg.data = GetIRDistance();
19 sharp_dist_pub.publish(msg);
20

21 loop_rate.sleep();
22 }

Explaining the Code

Let’s go over each section of the code.

Note: Lines that have already been explained above will be ignored.

ros::Subsriber sharp_dist_pub;

Constructs a ROS subscriber object called sharp_dist_pub.

sharp_dist_pub = nh->advertise<std_msgs::Float32>("channel/22/sharp_ir/dist", 1);

This line calls the advertise() method, this is used to inform the ROS Master node that we are going to be
publishing distance messages over a certain topic. The particular topic is declared in the first argument, in this case
channel/22/sharp_ir/dist. The second argument is where we set the capacity of the queue, this is important
for cases where messages are being sent faster than they are being recieved and processed. 1 is the queue size,
meaning if the size of the queue is greater than one, old messages will start being discarded as new ones arrive.

8.2. Subscribers and Publishers 127

Studica Robotics, Release 1.0.0

The sharp_dist_pub object is maintained until all copies of it are destroyed, in this case the channel/22/
sharp_ir/dist topic will automatically stop advertising messages.

ros::Rate loop_rate(50);

The ros::Rate class creates an object that allows us to set a frequency that we would like to run the while() loop
at. This is used in conjunction with the sleep() method by tracking the time in between calls to Rate::sleep()
and sleeping for the appropriate duration to set the loop frequency. For this example, the loop will run at 50Hz.

while (ros::ok()) {

ros::ok() will return false if:

• a SIGINT is received (Ctrl-C)

• we have been kicked off the network by another node with the same name

• ros::shutdown() is evoked

• all ros::NodeHandle(s) have been destroyed

std_msgs::Float32 msg;

Message datatype of Float32.

msg.data = GetIRDistance();

The message variable is passed with information from the GetIRDistance accessor function that is included in
Sharp_ros.h

sharp_dist_pub.publish(msg);

Once filled with sensor data, the publish object advertises the message to the channel/22/sharp_ir/dist
distance topic for any nodes connected.

loop_rate.sleep();

Like previously mentioned, this is used to sleep for a duration that allows the loop_rate object to maintain a
frequency of 50 specified in its declaration.

8.3 Services and Clients

8.3.1 Writing the Service Node

For the purposes of this demonstration we will use the NavX’s ROS Library for reference.

1 //Include the NavX Library
2 #include "navX_ros_wrapper.h"
3

4

5 bool navXROSWrapper::GetUpdateRate(vmxpi_ros::IntRes::Request &req, vmxpi_
→˓ros::IntRes::Response &res)

6 {
7 res.data = ahrs->GetActualUpdateRate();
8 return true;
9 }

(continues on next page)

128 Chapter 8. Using ROS

Studica Robotics, Release 1.0.0

(continued from previous page)

10

11 int main(int argc, char **argv)
12 {
13 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
14 ros::init(argc, argv, "update_rate_server");
15

16 ros::NodeHandle nh;
17

18 ros::ServiceServer update_rate = nh.advertiseService("get_update_rate", &
→˓navXROSWrapper::GetUpdateRate);

19 ros::spin();
20

21 return 0;
22 }

Explaining the Code

Let’s go over each section of the code.

#include "navX_ros_wrapper.h"

navX_ros_wrapper.h is the header for Studica’s NavX sensor ROS library.

bool navXROSWrapper::GetUpdateRate(vmxpi_ros::IntRes::Request &req, vmxpi_
→˓ros::IntRes::Response &res)

This function provides the service for obtataining the update rate. From the parameters passed, we can observe that
the request and respose is of service type IntRes that is defined in the IntRes.srv file located in the srv folder of
vmxpi_ros.

To declare more services, run:

cd /home/pi/catkin_ws/src/vmxpi_ros/vmxpi_ros/srv

cat > [Service Name].srv

Enter the request and response types separated by a --- line, for example:

int32 data

int32 response

Press Ctrl-D to save and exit the text file.

Confirm the creation of the .srv file by running:

rossrv show [Service Name]

Also add the newly created .srv file to the add_service_files in CMakeLists.txt as such:

Generate services in the 'srv' folder
add_service_files(

FILES
Int.srv

(continues on next page)

8.3. Services and Clients 129

Studica Robotics, Release 1.0.0

(continued from previous page)

IntRes.srv
Float.srv
FloatRes.srv
MotorSpeed.srv
StopMode.srv
StringRes.srv
[Service Name].srv //New service file

)

Below is an example of running the above commands:

Note: For more information on creating .srv service types, visit the Creating a ROS Msg and Srv tutorial.

{
res.data = ahrs->GetActualUpdateRate();
return true;

}

Here the GetActualUpdateRate() accessor method included in the navX_ros_wrapper.h header is stored
in the response variable and the service returns true.

ros::ServiceServer update_rate = nh.advertiseService("get_update_rate", &
→˓navXROSWrapper::GetUpdateRate);

The service is created and advertised over ROS.

130 Chapter 8. Using ROS

http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv

Studica Robotics, Release 1.0.0

8.3.2 Writing the Client Node

1 //Include the NavX Library
2 #include "navX_ros_wrapper.h"
3

4 int main(int argc, char **argv)
5 {
6 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
7 ros::init(argc, argv, "update_rate_client");
8

9 ros::NodeHandle nh;
10

11 ros::ServiceClient update_rate_client = nh.serviceClient<vmxpi_ros::IntRes>("get_
→˓update_rate");

12

13 vmxpi_ros::IntRes srv;
14

15 if (update_rate_client.call(srv));
16 {
17 ROS_INFO("Update Rate: %ld", (long int)srv.response.data);
18 }
19 else
20 {
21 ROS_ERROR("Failed to call service get_update_rate");
22 }
23

24 return 0;
25 }

Explaining the Code

Let’s go over each section of the code.

Note: Lines that have already been explained above will be ignored.

ros::ServiceClient update_rate_client = nh.serviceClient<vmxpi_ros::IntRes>("get_
→˓update_rate");

This creates the get_update_rate client, which will be used to call the service later.

vmxpi_ros::IntRes srv;

Since we are only receiving a response from the service, there is no need to stuff srv with information in its request
member.

update_rate_client.call(srv);

This is where the service is called, if the call succeeds a value of true is returned and srv.response will contain
a valid value, otherwise false is returned meaning the value of srv.response will be invalid.

8.3. Services and Clients 131

Studica Robotics, Release 1.0.0

8.4 Programming With ROS

In the vmxpi_ros_bringup/src directory there is a main.cpp file, this is the blank project file where the robot
code should go. The empty main.cpp file has been configured to accept and pass messages between the various
packages available in Studica’s ROS library.

To access these classes, simply include their respective headers and begin programming.

Note: An executable for main.cpp has been generated and added to the launch file. For more on launch files see
the Running the Package section.

8.4.1 Example Code

Opening the main.cpp file, there is already an implementation of the Ultrasonic Distance Sensor using the header
for the Ultrasonic Ros library. From analyzing the code, you can see that the program constructs an ultrasonic sensor
object and directly returns the distances in microseconds, centimeters, or inches.

1 //Include the Ultrasonic Library
2 #include "Ultrasonic_ros.h"
3

4

5 double ultrasonic_cm;
6

7 // Returns the distance value reported by the Ultrasonic Distance sensor
8 void ultrasonic_cm_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 ultrasonic_cm = msg->data;
11 }
12

13 int main(int argc, char **argv)
14 {
15 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
16 ros::init(argc, argv, "ultrasonic_node");
17

18 /**
19 * Constructor

(continues on next page)

132 Chapter 8. Using ROS

Studica Robotics, Release 1.0.0

(continued from previous page)

20 * Ultrasonic's ros threads (publishers and services) will run asynchronously in
→˓the background

21 */
22

23 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

24 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

25

26 ros::Subscriber ultrasonicCM_sub;
27

28 UltrasonicROS ultrasonic(&nh, &vmx, 8, 9); //channel_index_out(8), channel_index_
→˓in(9)

29 ultrasonic.Ultrasonic(); //Sends an ultrasonic pulse for the ultrasonic object to
→˓read

30

31 // Use these to directly access data
32 uint32_t raw_distance = ultrasonic.GetRawValue(); // returns distance in

→˓microseconds
33 // or can use
34 uint32_t cm_distance = ultrasonic.GetDistanceCM(raw_distance); //converts

→˓microsecond distance from GetRawValue() to CM
35 // or can use
36 uint32_t inch_distance = ultrasonic.GetDistanceIN(raw_distance); //converts

→˓microsecond distance from GetRawValue() to IN
37

38 // Subscribing to Ultrasonic distance topic to access the distance data
39 ultrasonicCM_sub = nh.subscribe("channel/9/ultrasonic/dist/cm", 1, ultrasonic_cm_

→˓callback); //This is subscribing to channel 9, which is the input channel set in
→˓the constructor

40

41 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

42

43 return 0;
44 }

Because an executable has already been generated for main.cpp, there is no need to modify its CMakeLists.txt
or the launch file. Refer to previous sections on building and running the code.

Note: This is a similar code block to the example shown in the Roscpp codeblock under the Ulrasonic Distance
Sensor section.

8.4. Programming With ROS 133

Studica Robotics, Release 1.0.0

134 Chapter 8. Using ROS

CHAPTER

NINE

RQT

9.1 What is RQT?

RQT is one of the many software frameworks of ROS that developers use to implement various plugins to form a
graphical user interface (GUI) for the ROS system. These GUIs can be open as individual windows in rqt making it
simple to manage various processes at the same time. Running the ROS image srcript installNoetic.sh includes
the rqt tool, there are common plugins already available available such as rqt_image_view for displaying images,
rqt_graph for viewing the network of node graphs, and rqt_plot for a visual representation of a 2-D plot.

In the package repository, there is a perspective file that includes GUIs for Dynamic Reconfigure, Image View, and
Node Graph plugins. To open this perspective file, refer to the following instructions below.

There are two ways of loading the vmxpi_ros_rqt.perspective file:

1. RQT GUI

• Run rqt in the command line ensuring roscore is running in another terminal in the background

rqt

• Navigate to the Perspectives tab

• Select Import... from the dropdown

• Navigate to the location of the vmxpi_ros_rqt.perspective file and open it

From the dashboard, three windows should appear containing the Dynamic Reconfigure, Image View, and Node Graph
GUIs.

2. From the Command Line

• Open a terminal and run roscore

135

Studica Robotics, Release 1.0.0

docs/ROS/images/rqt-perspectives.JPG

136 Chapter 9. RQT

Studica Robotics, Release 1.0.0

roscore

• Open another terminal and run

rqt --perspective-file "/home/pi/catkin_ws/src/vmxpi_ros/vmxpi_ros_rqt.perspective"

After running the command, the rqt dashboard will appear with the GUIs of the same three plugins already opened as
dockable windows.

9.1. What is RQT? 137

Studica Robotics, Release 1.0.0

138 Chapter 9. RQT

CHAPTER

TEN

CONTROL STATION

There are two versions of Control Station, a full GUI and a simple console based version.

10.1 Control Station Console

The Control Station Console is a simple console based version of Control Station.

10.1.1 Installation

Downloading

The Control Station Console can be downloaded here.

Installing

Once downloaded, run the Control-Station-Console.exe this will start the install.

The install will then run through the license agreement, and you can choose your installation path.

The install will now install onto your computer. It will be complete when you see this page.

10.1.2 Operation

Using the Control Station Console

The control station console is an easy to use program to enable and disable the VMX. To start using the control station
console open the Control Station Console.exe on your desktop or start menu.

The console will ask you to enter your robots IP address. If your team number is 1234 then using the format 10.
xx.xx.2 your IP address will be 10.12.34.2. If you have an ethernet connection to the robot the IP address will
be 172.22.11.2.

The console will then connect the Shuffleboard key to your IP address and launch Shuffleboard for you.

139

https://www.studica.com/downloads/Studica-Robotics/FRC-WSR/ControlStation/ControlStationConsole-Setup.zip

Studica Robotics, Release 1.0.0

140 Chapter 10. Control Station

Studica Robotics, Release 1.0.0

10.1. Control Station Console 141

Studica Robotics, Release 1.0.0

Control Station Console Main Screen

1. Battery Voltage Indicator - This will tell you the current voltage of the battery. When the battery starts to
approach 11.5V it is time to replace with a charged battery.

2. Robot Current State - This is the state indicator for the robot. As pictured the robot is in Teleoperated and is
Disabled. When the robot is enabled you will see a Teleoperated Enabled status instead.

3. IP Address you punched in and what is being used.

4. Quit (q) - press q on the keyboard to quit.

5. Set enabled (e,d) - press e to enable the robot and press d to disable the robot.

6. Set Control Mode (o,a,t) - Sets the control mode, currently as pictured the console is in Teleoperated mode.

• o is Teleoperated

142 Chapter 10. Control Station

Studica Robotics, Release 1.0.0

• a is Autonomous

• t is Test

7. Status Indicators - These are some flags to show you that connections are present. There are three flags Robot
Comms, Robot Code, and Joysticks.

• Robot Comms will indicate that the console is talking with the robot.

• Robot Code will indicate that there is valid code running on the robot.

• Joysticks will indicate that there is a joystick plugged in.

10.1. Control Station Console 143

Studica Robotics, Release 1.0.0

144 Chapter 10. Control Station

CHAPTER

ELEVEN

ROBOTICS AND CONTROL SYSTEMS

11.1 Sensors

11.2 Electrical and Wiring

11.3 Mechanical Systems

11.4 Robot Design

145

Studica Robotics, Release 1.0.0

146 Chapter 11. Robotics and Control Systems

CHAPTER

TWELVE

NETWORKING

Tip: Out of the box, the VMX will emit a Wi-Fi with an SSID of WorldSkills-1234 and requires a password.
The password is password.

The VMX allows for four different types of network connections.

• Wi-Fi Access Point (AP)

• Wi-Fi Client

• Ethernet

• Direct Desktop Connection

Important: It is always recommended to be in Wi-Fi AP mode. This is a factory default out of the box.

147

Studica Robotics, Release 1.0.0

12.1 Remote Desktop Connection

In AP, Client, and Ethernet mode, the VMX can be connected to a remote desktop connection. The preferred remote
connection is VNC Viewer, which can be downloaded here. VNC Viewer has the benefit of being able to see the
desktop of the VMX without the need for cables plugged into the VMX.

When first opening the VNC Viewer, it will look like this:

To access the VMX in the address bar, type in the IP address of the VMX.

There will be an identity check error; hit continue.

The login screen will now be visible to login use pi for username and raspberry for the password.

You should now have access to the VMX desktop.

148 Chapter 12. Networking

https://www.realvnc.com/en/connect/download/viewer/

Studica Robotics, Release 1.0.0

12.1. Remote Desktop Connection 149

Studica Robotics, Release 1.0.0

12.1.1 Cannot currently show the desktop

The Cannot currently show the desktop error occurs as the VMX has been set to console boot mode. To fix this, a
remote ssh session is required. Using an application such as PuTTY will allow for an ssh connection.

To start open PuTTY, change the connection type to SSH and enter the VMX’s IP address.

A terminal will pop up and ask for the login credentials. Just as before, the username is pi and the password is
raspberry.

Note: PuTTY uses standard networking encryption, so when typing in the password, there will be no text on the
screen.

Once logged in, the VMX’s terminal will be shown. To make the changes required, we will use raspi-config. Type the
following command in to get to raspi-config.

sudo raspi-config

150 Chapter 12. Networking

Studica Robotics, Release 1.0.0

12.1. Remote Desktop Connection 151

Studica Robotics, Release 1.0.0

This will open raspi-config. Navigate using the arrow keys on the keyboard to 3 Boot Options.

Select B1 Desktop / CLI.

Choose B4 Desktop Autologin. This will tell the VMX to boot up into the desktop and auto-login for us.

It should now be at the main screen of raspi-config again. There is one last step to fix the error. Select 7 Advanced
Options.

Select A5 Resolution

And choose any resolution that you want but the default.

Hit ESC to get back to the terminal and run the command below to restart the VMX.

sudo reboot now

Once rebooted, the VMX should now be accessed by the VNC viewer with the desktop visible.

12.2 Ethernet

The Ethernet port is always available and always on the same IP address. It uses the IP address of 172.22.11.2.

152 Chapter 12. Networking

Studica Robotics, Release 1.0.0

12.2. Ethernet 153

Studica Robotics, Release 1.0.0

154 Chapter 12. Networking

Studica Robotics, Release 1.0.0

12.2. Ethernet 155

Studica Robotics, Release 1.0.0

12.3 Wi-Fi Access Point (AP)

This is the default always recommended mode to be in. In this mode, the VMX will create its own Wi-Fi and allow a
computer to connect.

In AP mode, the IP address uses the format of 10.XX.YY.2 where XXYY corresponds to a four-digit team number.
Out of the box, the team number is set to 1234, which will give an IP address of 10.12.34.2.

To change this configuration or put the VMX back into AP mode, run the following command below.

setupWifiAP.sh SSID TEAMNUMBER PASSWORD

Where:

• SSID is the prefix for the name of the Wi-Fi.

• TEAMNUMBER is the four-digit team number.

• PASSWORD is an optional add-on that allows you to create a password for the Wi-Fi.

Important: At a worldskills competition, passwords will be required!

Out of the box, the Wi-Fi for the VMX will be WorldSkills-1234, and the password is password. In this case
the SSID = WorldSkills, the TEAMNUMBER = 1234, and the password = password. To get this, the command
will look like this.

setupWifiAP.sh WorldSkills 1234 password

156 Chapter 12. Networking

Studica Robotics, Release 1.0.0

12.4 Wi-Fi Client

Wi-Fi Client mode allows the VMX to connect to the internet.

To get into client mode, run the command:

setupWifiClient.sh

Important: Remember when done in client mode to switch back to AP mode.

12.5 Direct Desktop Connection

The direct desktop connection is using the VMX as an average computer. This would entail plugging a keyboard and
mouse into the VMX USB ports and then a micro HDMI cable into one of the HDMI ports on the VMX. Usually,
this is required when the IP address is unknown, or there is an issue where the networking is not working, and more
troubleshooting is needed.

12.4. Wi-Fi Client 157

Studica Robotics, Release 1.0.0

158 Chapter 12. Networking

CHAPTER

THIRTEEN

CONNECTING SENSORS AND ACTUATORS

The VMX Robotics Controller provides a large number of electrical power and signal “pins” which connect to external
devices including Sensors and Actuators.

Note: This summary of VMX IO configuration is sufficient for most robot Programming uses; more detailed infor-
mation is available in the Hardware Reference Manual.

Fig. 1: VMX Connector Blocks

VMX provides several different Connector Blocks.

Connector Block Connector Type Location on VMX
Flex DIO Header 3-pin PWM-style Left-side Top
High Current DIO Header 3-pin PWM-style Left-side mid
Analog Input Header 3-pin PWM-style Left-side bottom
Comm DIO Connectors 4-pin JST GH Bottom-left
Flex DIO Connectors 4-pin JST GH Bottom-middle
CAN Connector 2-wire Weidmuller Bottom-right

Three (3) types of Connectors are used:

159

https://pdocs.kauailabs.com/vmx-pi/intro/hardware-reference-manual/

Studica Robotics, Release 1.0.0

Fig. 2: 3-pin PWM-style Connector

Fig. 3: 4-pin JST GH Connector

Fig. 4: 2-Wire CAN Wire

160 Chapter 13. Connecting Sensors and Actuators

Studica Robotics, Release 1.0.0

3-pin PWM-style Connectors, JST GH Connectors and Breakout Boards and CAN Wires are available for purchase
online.

13.1 FlexDIO Connectors

FlexDIO Connectors are a set of four locking JST GH connectors (4 pins each) with power, ground, signal A and signal
B on each connector. These connectors are designed to support Quadrature Encoders, but may also be configured for
use as Digital Inputs, Interrupts, Digital Outputs, PWM Generators or Counters.

Fig. 5: FlexDIO Connectors

13.2 FlexDIO Header

The FlexDIO Header provides 4 sets of power, ground, and a single signal channel. The signals may be configured
to support Quadrature Encoders, Digital Inputs, Interrupts, Digital Outputs, PWM Generators or Counters. Note that
only 2 of the pins on this header support Quadrature Encoders, see below for details.

13.1. FlexDIO Connectors 161

https://www.studica.com/ca/en/Worldskills2021/pwm-cable-set-tjc8-3-pin-22awg-f-f-12-pcs_1.html
https://www.studica.com/ca/en/Worldskills2021/vmx-wire-pack.html
https://www.studica.com/ca/en/Worldskills2021/titan-wire-pack.html

Studica Robotics, Release 1.0.0

Fig. 6: FlexDIO Header

13.3 CAN Connector

The CAN Connector accepts a pair of wires (CANH and CANL signals) with bare ends, which connect to a CAN bus.

13.4 High-Current DIO Header

The High-Current DIO Header provides 10 sets of power, ground, and a single signal channel. The signals may be
configured to support Digital Inputs, Interrupts, Digital Outputs, PWM Generators or Relays.

Note: The High-Current DIO Header may be configured in either Output or Input Direction, see below for details.

13.5 Analog Input Header

The Analog Input Header provides 4 sets of power, ground, and a single signal channel. The signals may be configured
to support Analog Accumulation and/or Analog-triggered Interrupts.

162 Chapter 13. Connecting Sensors and Actuators

Studica Robotics, Release 1.0.0

Fig. 7: CAN Connector

Fig. 8: High-Current DIO Header

13.5. Analog Input Header 163

Studica Robotics, Release 1.0.0

Fig. 9: Analog Input Header

13.6 CommDIO Connectors

The three (3) CommDIO Connectors are three locking JST GH connectors (4 pins each) with different sets of
power/ground/signals. Each connector may be configured to communicate using the corresponding digital communi-
cation protocol. Alternatively, the Input Channels may be configured for use as Digital Inputs or Interrupts; Output
Channels may be configured for use as Digital Outputs or PWM.

Each of the four pins on each connector have a different definition, depending upon the type:

I/O Channel Type Pin 1 Pin 2 Pin 3 Pin 4
I2C Ground Power (5 or 3.3V) SDA [OUTPUT] SCL [OUTPUT]
TTL UART Ground Power (5 or 3.3V) TX [OUTPUT] RX [INPUT]
SPI SCK [OUTPUT] MOSI [OUTPUT] MISO [INPUT] CS [OUTPUT]

Note: Unlike the I2C and TTL UART Connectors, the SPI connector has 4 signal pins and does not provide power
and ground.

13.7 Output Voltage Selection

Either 5 or 3.3V power output for external devices (both power and signal level) may be selected for Flex, High Current
and Comm DIOs and also for power pins on the Analog Input Header.

Caution: If any of the external devices connected to pins in any of these groups are not 5V tolerant, ensure the
voltage selection jumper is set to 3.3V to avoid damage to the external device.

164 Chapter 13. Connecting Sensors and Actuators

Studica Robotics, Release 1.0.0

Fig. 10: CommDIO Connectors

Fig. 11: Output Voltage Selection Jumpers

13.7. Output Voltage Selection 165

Studica Robotics, Release 1.0.0

Note: The Output Voltage Selection Jumper can only be accessed by opening the VMX enclosure.

13.8 High Current DIO Channel Direction configuration

The entire bank of High Current DIOs can be either all outputs (default), or all inputs. Direction selection is performed
in hardware via the High Current DIO Input/Output Jumper. If the jumper is present, all High Current DIOs function
as outputs, otherwise they function as inputs.

Output Configuration: 10 High Current DIO Pins are Digital Outputs Input Configuration: 10 High Current DIO Pins
are Digital Inputs

Fig. 12: High Current DIO Channel Direction Jumper

The High Current Direction setting impacts the behavior of PWM, Relay and Digital IO Channels, described further
below. Therefore this setting is one of the first things to verify in case of improper operation of the High Current DIO
Channels.

Tip: Use the default Direction (Output) unless your configuration requires more digital inputs.

Note: The Output Voltage Selection Jumper can only be accessed by opening the VMX enclosure.

166 Chapter 13. Connecting Sensors and Actuators

CHAPTER

FOURTEEN

WPI CHANNEL ADDRESSING

When programming a robot application using the WPI Library, logical WPI Channel Numbers are used; these WPI
Channel Numbers are different than the VMX Pin Numbers described in Connecting Sensors and Actuators.

Important: WPI Channel Addressing is impacted by whether the High-Current DIO Direction Selection Jumper is
set to OUTPUT or INPUT.

Similarly, WPI Channel Identifiers are also used to address Digital Communications Ports.

14.1 High Current DIO Header OUTPUT DIRECTION (Default)

When the VMX High Current DIO Direction is set to OUTPUT, the various WPI Library Channel types (Analog
Input, PWM, Relay, Digital IO) must be addressed as described in this section.

14.1.1 Analog Input Channel Addressing

Four (4) Pins on the VMX Analog Input Header are addressable via four (4) WPI Library Analog Input Channel
Addresses.

Fig. 1: WPI Library Analog Input Channel Addressing

167

Studica Robotics, Release 1.0.0

14.1.2 PWM Channel Addressing

28 VMX pins are usable for PWM and are addressable via 28 WPI Library PWM Channel Addresses.

Fig. 2: FlexDIO Header and High-Current DIO Header WPI Library PWM Channel Addressing

Note: The High-Current Output Direction must be set to OUTPUT to use pins on the High-Current Header as PWM
Generators.

14.1.3 Digital I/O (DIO) Channel Addressing

30 VMX pins are usable for Digital I/O Channels and are addressable via 30 WPI Libray DIO Channel Addresses.

Note: All FlexDIO pins are direction-selectable in software.

Note: When configured in the OUTPUT Direction, the High Current DIO Pins only have Output Capability.

Note: Each CommDIO Pin is either an Output or an Input.

168 Chapter 14. WPI Channel Addressing

Studica Robotics, Release 1.0.0

Fig. 3: CommDIO and FlexDIO Connector WPI Library PWM Channel Addressing

Fig. 4: FlexDIO Header and High-Current DIO Header WPI Library DIO Channel Addressing

14.1. High Current DIO Header OUTPUT DIRECTION (Default) 169

Studica Robotics, Release 1.0.0

Fig. 5: CommDIO and FlexDIO Connector WPI Library DIO Channel Addressing

14.1.4 Relay Channel Addressing

8 pins on the VMX High Current DIO Header are usable as 4 Relay Channel pairs – each with a forward direction pin
and a reverse direction pin – and are addressable via 4 WPI Library Relay Channel Addresses.

14.2 Limits on Quadrature Encoders and Counters

14.2.1 Quadrature Encoder Configuration

Up to 5 Quadrature Encoders are supported. Quadrature Encoders A & B Inputs must be connected to adjacent pairs
of FlexDIO Digital Input Channels; the following FlexDIO Digital Input Channel pairs may be used for Quadrature
Encoders:

DI 0 and 1

DI 2 and 3

DI 4 and 5

DI 6 and 7

DI 8 and 9

The lower-numbered channel of each pair should be connected to Quadature Encoder Channel A, and the higher-
numbered channel should be connected to Quadrature Encoder Channel B.

170 Chapter 14. WPI Channel Addressing

Studica Robotics, Release 1.0.0

Fig. 6: High-Current DIO Header WPI Library Relay Channel Addressing

14.2.2 Counter Configuration

Up to 6 Counters are supported. Each Counter is internally connected to a adjacent pairs of FlexDIO Digital Input
Channels. The following FlexDIO Digital Input Channel pairs may be used for Counters:

Counter Input Channel Pair Supported WPI Library Counter Modes
DI 0 & 1 kTwoPulse1, kSemiPeriod, kExternalDirection
DI 2 & 3 kTwoPulse1, kSemiPeriod, kExternalDirection
DI 4 & 5 kTwoPulse1, kSemiPeriod, kExternalDirection
DI 6 & 7 kTwoPulse1, kSemiPeriod, kExternalDirection
DI 8 & 9 kTwoPulse1, kSemiPeriod, kExternalDirection
DI 10 & 11 kTwoPulse1, kSemiPeriod

Note: kPulseLength mode is not supported on any VMX Counter. By extension, this implies that the “Direction
Sensitive” mode of the WPI Library’s “Geartooth” class is not supported.

Note: If configuring a counter to use one input channel (e.g., kTwoPulse or kSemiPeriod modes), the unused input
channel in that Counter’s Channel Pair may be configured in software for other uses (including Digital Input, Interrupt,
Digital Output), although it may not be configured for PWM Generation or PWM Capture.

1 kTwoPulse mode using two separate input signals (e.g., one “Up” input signal and a separate “Down” input signal) are not supported. However,
a single input configured as both “Up” and “Down” is supported.

14.2. Limits on Quadrature Encoders and Counters 171

Studica Robotics, Release 1.0.0

14.3 High Current DIO Header INPUT DIRECTION

When the High Current DIO Direction Jumper is set to INPUT, the WPI Library Channel Addressing is impacted as
follows:

WPI Library PWM Channels 0-9 are NOT PRESENT in INPUT MODE.

WPI Library Relay Channels are NOT PRESENT in INPUT MODE.

WPI Library Digital IO Channels on the HiCurrDIO Header are in INPUT MODE ONLY in INPUT MODE, as shown
below:

Fig. 7: High-Current DI Header WPI Library DIO Channel Addressing (when in INPUT MODE)

14.4 Digital Communication Port Addressing

VMX provides several different types of Digital Communications Ports:

• Serial Ports

• I2C Port

• SPI Port

14.4.1 Serial Ports

The WPI Library SerialPort class includes Serial Port Identifiers, as follows:

Serial Port Identifier Type Notes
kOnboard RS-232 Port Not implemented on VMX
kMXP TTL UART VMX CommDIO “UART” Connector
kUSB USB Serial Port Raspberry Pi “top-left” USB port; aka ‘kUSB1’
kUSB1 USB Serial Port Raspberry Pi “top left” USB port
kUSB2 USB Serial Port Raspberry Pi “bottom left” USB port

172 Chapter 14. WPI Channel Addressing

Studica Robotics, Release 1.0.0

Note: As can be seen in the table above, both kUSB and kUSB1 identifiers map to the same physical connector, and
thus cannot be used simultaneously.

The Raspberry Pi 4 provides multiple USB Ports which support the USB Serial Port standard; the WPI Serial Port
Identifiers which are mapped to these USB Ports are shown below:

Fig. 8: Raspberry Pi USB Port WPI Library Serial Port Addressing

TTL UART Communication Speeds

Available TTL UART Communication speeds can be as high as 230400 bits/sec. Note that the TTL UART-capable
device connected to VMX may only communicate at a lower speed than 230400 kbps; consult the external device
technical documentation for further details.

USB Serial Port Communication Speeds

USB Serial Port Communication Speeds can be much higher than TTL UART Communication Speeds, and are variable
depending upon USB bus usage and the capabilities of the connected device; users do not specify USB Serial Port
communication speeds.

14.4.2 I2C Port

VMX provides one I2C port.

The WPI Library I2C class includes two (2) I2C Port identifiers, as follows:

Serial Port Identifier Type Notes
kOnboard I2C Fast Mode[2]_ VMX CommDIO “I2C” Connector
kMXP I2C Fast Mode[2]_ VMX CommDIO “I2C” Connector

14.4. Digital Communication Port Addressing 173

Studica Robotics, Release 1.0.0

Note: As can be seen in the table above, both kOnboard and kMXP identifiers map to the same physical connector,
and thus cannot be used simultaneously.

Note: The Raspberry Pi 4B supports I2C clock-stretching, however previous versions of Raspberry Pi do not. If the
I2C device accessed requires I2C clock stretching, Raspberry Pi 4B is required.

I2C Communication Speeds

By default, the Raspberry Pi I2C bus speed is 100Khz (“Standard Mode”). To change the bus speed to 400Khz (Fast
Mode) follow these I2C bus speed configuration instructions. Note that the I2C-capable device connected to VMX
may only communicate at a lower speed than 400Khz; consult the external device technical documentation for further
details.

14.4.3 SPI Port

VMX provides one SPI port.

The WPI Library “SPI” class includes five (5) SPI Port identifiers, as follows:

Serial Port Identifier Type Notes
kOnboardCS0 4-wire SPI VMX CommDIO “SPI” Connector
kOnboardCS1 4-wire SPI VMX CommDIO “SPI” Connector
kOnboardCS2 4-wire SPI VMX CommDIO “SPI” Connector
kOnboardCS3 4-wire SPI VMX CommDIO “SPI” Connector
kMXP 4-wire SPI VMX CommDIO “SPI” Connector

Note: As can be seen in the table above, each kOnboardx and kMXP identifiers map to the same physical connector,
and thus cannot be used simultaneously.

SPI Communication Speeds

The Raspberry pi supports a wide range of SPI speeds.

By default, the WPI Library SPI class defaults to 500Khz, but this can be increased as necessary.

Although higher speeds are theoretically possible, 16Mhz is considered a safe maximum speed, and lower is rec-
ommended due since very fast signals can be easily degraded. Note that the SPI-capable device connected to VMX
may only communicate at a lower speed than 16Mhz; consult the external device technical documentation for further
details.

Note that the actual speed may not match the requested speed; more information on the actual speeds is contained
within the Raspberry Pi SPI Documentation.

174 Chapter 14. WPI Channel Addressing

https://www.raspberrypi-spy.co.uk/2018/02/change-raspberry-pi-i2c-bus-speed/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md

CHAPTER

FIFTEEN

CONFIGURING AND TESTING THE SR PRO CAMERA

Once the SR Pro Camera has been installed onto the VMX Robotics Controller, the next step is to ensure the camera
is configured correctly and to verify the camera images can be accessed on the Raspberry Pi.

15.1 Configuring Raspberry Pi’s Camera Interface

By default, the VMX Robotics Controller Raspberry Pi SD Card enables the Raspberry Pi Camera interface. This can
be verified from the Raspberry Pi “Preferences->Raspberry Pi Configuration” Menu Item:

The “Camera” interface should be enabled; if this setting is changed, the Raspberry Pi must be rebooted for the change
to take effect.

15.2 Testing the Camera

To verify basic camera option, remove the SR Pro Lens cap, and acquire a still image by running the raspistill command
from a Raspberry Pi terminal:

Once acquired, the image can be viewed from the Raspberry Pi Desktop.

NOTE: If your VMX Robotics Controller has an actively running Robot Program that is accessing the camera, raspistill
will fail to acquire an image and output an error message.

If you are confident the SR Pro Camera is securely installed and still encounter an error message when Testing the
Camera using raspistill, it’s possible a Robot Program running on the VMX Robotics Controller already has access to
the SR Pro Camera; in this case, you can shut down any actively running Robot Program by issuing this command at
a Raspberry Pi console:

frcKillRobot.sh

To restart the robot program, you can later run this command:

frcRunRobot.sh

175

Studica Robotics, Release 1.0.0

Fig. 1: Raspberry Interface Configuration Dialog

176 Chapter 15. Configuring and Testing the SR Pro Camera

Studica Robotics, Release 1.0.0

Fig. 2: Acquiring an Image to File with raspistill

15.3 Raspberry Pi Camera Video Device ID

When writing code to access the SR Pro Camera, the Video Input Device number must be used to address the Camera.

By default, when the SR Pro Camera is the only Video Input Device connected to the Raspberry Pi, it’s Video Input
Device number is 0.

The Raspberry Pi raspistill utility can verify this, as it will display the Video Input Device number when the “-v”
(verbose) option is provided as shown below:

15.4 Simple Camera Test Script

The following python script, which runs directly on the Raspberry Pi, can be used to acquire video from the SR Pro
Camera; this script uses the OpenCV Library to acquire images from the SR Pro Camera, convert them to grayscale,
and render the images to the Raspberry Pi display. This script continues to run until the “ESCAPE” key is pressed.

Note that in the script code below, the “0” parameter to the cv2.VideoCapture() function indicates that Video Input
Device 0 should be used.

Since both OpenCV and Python are pre-installed on the VMX Robotics Controller SD-Card, no other software must
be installed to run the following script:

1 import numpy as np
2 import cv2
3

4 cap = cv2.VideoCapture(0)
5 cap.set(3,640) # Width
6 cap.set(4,480) # Height

(continues on next page)

15.3. Raspberry Pi Camera Video Device ID 177

Studica Robotics, Release 1.0.0

Fig. 3: Viewing the image captured with raspistill

178 Chapter 15. Configuring and Testing the SR Pro Camera

Studica Robotics, Release 1.0.0

Fig. 4: Displaying the Video Input Device number using raspistil’s verbose mode.

15.4. Simple Camera Test Script 179

Studica Robotics, Release 1.0.0

(continued from previous page)

7

8 while(True):
9 ret, raw = cap.read()

10 raw = cv2.flip(raw, -1)
11 gray = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
12

13 cv2.imshow('raw', raw)
14 cv2.imshow('gray', gray)
15

16 k = cv2.waitKey(30) & 0xff
17 if k == 27: # 'ESC' to exit
18 break
19

20 cap.release()
21 cv2.destroyAllWindows()

Simply save the above code to a file with a “.py” extension (for example “sr_pro_test.py”), and then execute it from a
Raspbery Pi console by running this command:

python sr_pro_test.py

15.5 Accessing the SR Pro Camera using the WPI Library

The SR Pro Camera may be accessed from a Robot Program via the WPI Library CameraServer class, which works
with the Raspberry Pi’s V4L2 driver to both configure and acquire camera data.

The Video Input Device number described above is used to specify the video camera in the WPI Library CameraServer
class, as shown below:

// Creates UsbCamera and MjpegServer and connects them int sr_pro_video_input_device_number = 0; Cam-
eraServer.getInstance().startAutomaticCapture(sr_pro_video_input_device_number);

WPI Library-based vision processing techniques are documented in the WPI Libary vision processing documentation.

180 Chapter 15. Configuring and Testing the SR Pro Camera

https://docs.wpilib.org/en/stable/docs/software/vision-processing/introduction/index.html

CHAPTER

SIXTEEN

CALIBRATING AND USING THE NAVX-SENSOR IMU

VMX includes an internal navX-Sensor IMU, comprised of 3 gyroscopes, 3 accelerometers, 3 magnetometers and
a motion processor which processes data from these sensors and generates measurements of angular orientation and
linear acceleration.

16.1 Basic Usage

16.1.1 Orientation

VMX measures a total of 9 sensor axes (3 gyroscope axes, 3 accelerometer axes and 3 magnetometer axes) and fuses
them into a 3-D coordinate system. In order to effectively use the values reported by VMX, a few key concepts must
be understood in order to correctly install VMX on a robot.

3-D Coordinate System

When controlling a robot in 3 dimensions a set of 3 axes are combined into a 3-D coordinate system, as depicted
below:

In the diagram above, the green rounded arrows represent Rotational motion, and the remaining arrows represent
Linear motion.

Axis Orientation Linear Motion Rotational Motion
X (Pitch) Left/Right

• Left / + Right • Tilt Backwards

Y (Roll) Forward/Backward
• Forward / - Back-

wards
• Roll Left

Z (Yaw) Up/Down
• Up / - Down • Clockwise / -

Counter-clockwise

181

Studica Robotics, Release 1.0.0

Fig. 1: navX-Sensor Coordinate System

182 Chapter 16. Calibrating and Using the navX-sensor IMU

Studica Robotics, Release 1.0.0

Reference Frames

Note that the 3-axis coordinate system describes relative motion and orientation; it doesn’t specify the orientation with
respect to any other reference. For instance, what does “left” mean once a robot has rotated 180 degrees?

To address this, the concept of a reference frame was invented. There are three separate three-axis “reference frames”
that should be understood:

Coordinate System Reference Frame X Axis Y Axis
Field World Frame Side of Field Front (Head) of Field
Robot Body Frame Side of Robot Front (Head) of Robot
navX-sensor Board Frame See diagram Below See diagram below

Since a three-axis joystick is typically used to control a robot, the robot designer must select upon which Reference
Frame the driver joystick is based. This selection of Reference Frame typically depends upon the drive mode used:

Drive mode Reference Frame Coordinate Orientation
Standard Drive Body Frame Forward always points to the front (head) of the robot
Field-oriented Drive World Frame Forward always points to the front (head) of the field

VMX Board Orientation

Aligning Board Frame and Body Frame

In order for the VMX orientation sensor readings to be easily usable by a robot control application, the VMX Coordi-
nate System (Board Frame) must be aligned with the Robot Coordinate system (Body Frame).

Aligning the Yaw (Z) axis and Gravity

The VMX motion processor takes advantage of the fact that gravity can be measured with its onboard accelerometers,
fusing this information with the onboard gyroscopes to yield a very accurate yaw reading with a low rate of drift. In
order to accomplish this, the yaw (Z) axis must be aligned with the “gravity axis” (the axis that points directly up and
down with respect to the earth).

When installing VMX on a robot, the VMX yaw (Z) axis and the gravity axis must be aligned.

Default VMX Board Orientation

The default VMX circuit board orientation is with the VMX logo on the Front Right, with the top of the circuit board
pointing up (with respect to the earth).

Since Body Frame and Board Frame coordinates should be aligned, and because the Yaw axis must be aligned with
gravity, by default you must orient the VMX with the top of the board facing up, and with the Y axis (on the circuit
board) pointing to the front of the robot.

If you need to mount the VMX circuit board in a different orientation (vertically, horizontally, or upside down), you
can use the OmniMount feature to transform the orientation.

16.1. Basic Usage 183

https://en.wikipedia.org/wiki/Frame_of_reference

Studica Robotics, Release 1.0.0

Fig. 2: Joystick Axes Orientation

184 Chapter 16. Calibrating and Using the navX-sensor IMU

Studica Robotics, Release 1.0.0

16.1.2 Gyroscope/Accelerometer Calibration

VMX onboard orientation sensors require calibration in order to yield optimal results. We highly recommend taking
the time to understand this calibration process – successful calibration is vital to ensure optimal performance.

Accurate Gyroscope Calibration is crucial in order to yield valid yaw angles. Although this process occurs automati-
cally, understanding how it works is required to obtain the best results.

Important: If you are tempted to ignore this information, please read the section entitled “The Importance of
Stillness” at the end of this section.

Calibration Process

The VMX Calibration Process is comprised of three calibration phases:

• Factory Calibration

• Startup Calibration

• On-the-fly Calibration

Fig. 3: navX-Sensor Calibration Process

16.1. Basic Usage 185

Studica Robotics, Release 1.0.0

Factory Calibration

Before VMX units are shipped, the accelerometers and gyroscopes are initially calibrated at the factory; this calibration
data is stored in flash memory and applied automatically to the accelerometer and gyroscope data each time the navX-
Micro circuit board is powered on.

Note that the onboard gyroscopes are sensitive to temperature changes. Therefore, since the average ambient temper-
ature at the factory (on the island of Kauai in Hawaii) may be different than in your environment, you can optionally
choose to re-calibrate the gyroscope by pressing and holding the “CAL” button for at least 10 seconds. When you
release the “CAL” button, ensure that the “CAL” Led flashes briefly, and then press the “RESET” button to restart
navX-Micro. When VMX is re-started, it will perform the Initial Gyro Calibration – the same process that occurs at
our factory. NOTE: It is very important to hold VMX still, and parallel to the earth’s surface, during this Initial Gyro
Calibration period. You might consider performing this process before using your robot the first time it is used within
a new environment (e.g., when you arrive at a FTC competition event).

The value of re-running Factory Calibration at the same temperature VMX will be operated at is potentially increased
yaw accuracy as well as faster Startup Calibration. If a significant temperature shift has occurred since the last Factory
Calibration, the Startup Calibration time may take longer than normal, and it’s possible that yaw accuracy will be
diminished until the next On-the-fly Gyro Calibration completes.

Startup Calibration

Startup Calibration occurs each time VMX is powered on, and requires that the sensor be held still in order to complete
successfully. Using the Factory Calibration as a starting point, the sensor calibrates the accelerometers and adjusts the
gyroscope calibration data as well based upon current temperature conditions.

If the sensor continues to move during startup calibration, Startup Calibration will eventually timeout – and as a result,
the VMX yaw angle may not be as accurate as expected.

Initial Yaw Offset Calibration

Immediately after Startup Calibration, an Initial Yaw Offset is automatically calculated. The purpose of the Initial Yaw
Offset is to ensure that whatever direction the “front” of the VMX circuit board is pointed to at startup (after initial
calibration is applied) will be considered “0 degrees”.

Yaw Offset Calibration requires that VMX be still for approximately 2 seconds after Startup Calibration completes.
After approximately 2 seconds of no motion, VMX will acquire the current yaw angle, and will subtract it from future
yaw measurements automatically. The VMX protocol and libraries provide a way to determine the yaw offset value it
is currently using.

NOTE: If VMX is moving during startup, this Yaw Offset Calibration may take much longer than 2 seconds, and may
not be calculated at all if the sensor continues moving long enough. Therefore it is highly-recommended to keep VMX
still until initial calibration and Initial Yaw Offset calibration completes.

186 Chapter 16. Calibrating and Using the navX-sensor IMU

Studica Robotics, Release 1.0.0

On-the-fly Gyro Calibration

In addition to Startup Calibration, during normal operation VMX will automatically re-calibrate the gyroscope (e.g.,
to account for ongoing temperature changes) during operation, whenever it detects 8 seconds of no motion. This
process completes after about 7-8 more seconds, and is completely transparent to the user. Therefore each time VMX
is still for approximately 15 seconds, the gyroscopes are re-calibrated “on-the-fly”. The purpose of On-the-fly Gyro
re-calibration is to help maintain yaw accuracy when shifts in ambient temperature occur during operation.

This On-the-fly Gyro Calibration can help deal with cases where the sensor was moving during Startup Calibration,
but note that the yaw is not zeroed at the completion of On-the-fly Calibration. So once again, it’s important to keep
the sensor still during Startup Calibration.

Runtime Yaw Zeroing

Your robot software can optionally provide the robot operator a way to reset the yaw angle to Zero at any time. Please
see the documentation for the VMX libraries for more details.

The importance of stillness

Important: This is the most important takeaway from this discussion: It is highly-recommended that VMX be held
still during the above Initial Gyro and Initial Yaw Offset calibration periods. In support of this, VMX indicates when
it is calibrating; we recommend you incorporate this information into your software. Please see the discussion of the
navXUI, and the VMX libraries for more details on this indication.

16.1.3 navXUI

The navXUI user interface application provides a simple way to visualize the data provided by VMX.

To install and run navXUI:

• Download the VMX Tools for Windows latest build.

• Unpack the contents of the vmx-pi.zip file and run the setup.exe program

• Connect a USB cable between the VMX circuit board and your Windows computer.

• From the Windows Menus, click on Kauai Labs->navXUI

Gyro Calibration in Progress Indicator

The Gyro Calibration in Progress Indicator is displayed during initial gyroscope calibration, which occurs immediately
after power is applied to VMX. If the gyroscope calibration does not complete, VMX yaw accuracy will be adversely
impacted. For more information on Gyro Calibration, please see the Gyro/Accelerometer Calibration page.

16.1. Basic Usage 187

https://www.kauailabs.com/public_files/vmx-pi/vmx-pi.zip

Studica Robotics, Release 1.0.0

Fig. 4: navXUI

188 Chapter 16. Calibrating and Using the navX-sensor IMU

Studica Robotics, Release 1.0.0

Motion Indicators

VMX provides dynamic motion indicators: (a) the “Moving” indicator and (b) the “Rotating” indicator.

The Moving indicator is present whenever the current Gravity-corrected Linear Acceleration exceeds the “Motion
Threshold”.

The Rotating indicator is present whenever the change in yaw value within the last second exceeds the “Rotating
Threshold”. Note that VMX Gyroscope Calibration only occurs when VMX is not Rotating for a few seconds.

Gravity-corrected Linear Acceleration (G)

VMX automatically subtracts acceleration due to gravity from accelerometer data, and displays the resulting linear
acceleration. These measures are in units of instantaneous G, and are in World Reference Frame.

Sensor Temperature

The Sensor Temperature indicates the die temperature of the MPU-9250 IC. Since shifts in gyro temperature can
impact yaw accuracy, VMX will automatically perform Gyroscope calibration whenever VMX is still. See the
Gyro/Accelerometer Calibration page for more details.

Magnetic Disturbance Indicator

Once the VMX Magnetometer has been calibrated (see the Magnetometer Calibration page), whenever the current
magnetic field diverges from the calibrated value for the earth’s magnetic field, a magnetic disturbance is indicated.

Yaw Angle

The Yaw Angle is displayed in grey text if Gyro Calibration has not yet been completed. Once Gyro Calibration is
complete, the Yaw Angle text color will change to white.

Pitch/Roll Angles

The Pitch/Roll Angles are always displayed in white text, since Accelerometer calibration occurs at the Kauai Labs
factory.

Compass Angle

The Compass Angle displays the tilt-compensated compass heading calculated from VMX’s Magnetometer combined
with the tip/tilt measure from the Accelerometers.

The Compass Angle is displayed in grey text if Magnetometer Calibration has not yet been completed. Once Magne-
tometer Calibration is complete, the Compass Angle text color will change to white.

16.1. Basic Usage 189

Studica Robotics, Release 1.0.0

9-axis (“Fused”) Heading

The 9-axis heading is displayed in grey text if Magnetometer Calibration has not yet been completed and/or if no
undisturbed magnetic readings have occurred.

Running navXUI

To start navXUI, from your Start Menu select “Kauai Labs” and then “VMX-pi” and click on the “navXUI” icon to
start navXUI.

If your computer has more than one serial port, you can select which serial port to use by clicking on the up/down
arrows in the COM port selection control in the UI.

16.1.4 Yaw Drift

A gyroscope measures the amount of angular rotation about a single axis. Since the gyroscope measures changes
in angular rotation, rather than an absolute angle, calculation of the actual current angle of that axis is estimated via
numerical integration rather than an exact measurement.

Any Inertial Measurement Unit (IMU), including the VMX_pi IMU, that integrates a signal from a gyroscope will
also accumulate error over time. Accumulated error is due to several factors, including:

• Quantization noise (which occurs when an analog-to-digital converter (ADC) converts a continuous analog value
to a discrete integral value)

• Scale factor error (which occurs due to manufacturing errors causing a specified scale factor [e.g., 256 bits per
unit G] to be incorrect)

• Temperature instability (which occurs when a sensor is more or less sensitive to an input as temperature changes)

• Bias error (which occurs because the value the sensor reports at ‘zero’ is not known well enough to ‘subtract’
that value out during signal processing)

Over time, these errors accumulate leading to greater and greater amounts of error.

With the VMX orientation sensor, Quantization error is minimized due to the sensor internal signal conditioning,
high-resolution 16-bit Analog-to-Digital Converters (ADC), and extremely fast internal sampling (200Hz). Scale
factor error is easily corrected for by factory calibration, which VMX provides. So these two noise sources are not
significant in VMX.

The remaining sources of error – temperature instability and bias error – are more challenging to overcome:

Gyro bias error is a major contributor to yaw drift error, but is inherent in modern MEMS-based gyroscopes used in
the navX-Sensor.

Temperature instability can cause major amounts of error, and should be managed to get the best result. To address
this, the navX-sensor automatically re-calibrates the gyro biases whenever it is still for several seconds, which helps
manages temperature instability. Errors in the VMX Pitch and Roll values to be extremely accurate over time since
gyroscope values in the pitch/roll axes can be compared to the corresponding values from the accelerometer. This is
because when VMX is still, the accelerometer data reflects only the linear acceleration due to gravity.

Correcting for integration error in the Yaw axis is more complicated, since the accelerometer values in this axis are the
same no matter how much yaw rotation exists.

To deal with this, several different “data fusion” algorithms have been developed, including the Extended Kalman Filter
(EKF) used by the navX-sensor. THe EKF filter is designed to process 3-axis accelerometer and 3-axis gyroscope
values and yield yaw/pitch/roll values.

190 Chapter 16. Calibrating and Using the navX-sensor IMU

Studica Robotics, Release 1.0.0

With this processing, VMX exhibits yaw drift on the order of ~1 degree per minute; yaw drift is typically much lower
when VMX is still.

16.1.5 Best Practices

This page summarizes the recommended best practices when integrating VMX with a robot. Following these best
practices will help ensure high reliability and consistent operation.

1) Secure VMX circuit board to the Robot Chassis

Excessive vibration will reduce the quality of VMX orientation sensor measurements. The VMX circuit board should
be mounted in such a way that it as firmly attached to the robot chassis.

2) Understand and Plan for Calibration

Gyro/Accelerometer Calibration is vital to achieving high-quality VMX IMU readings. Be sure to understand this
process, and ensure that it completes successfully each time you use the robot.

If your robot moves during calibration, or if noticeable temperature changes occur during calibration, the calibration
process may take longer than normal.

Using the VMX yaw angle before calibration completes may result in errors in robot control. To avoid this situation,
your robot software should verify that calibration has completed before using VMX IMU data.

3) Protect the Circuitry

VMX contains sensitive circuitry. The VMX circuit board should be handled carefully.

An enclosure is recommended to protect the VMX circuit board from excessive handling, “swarf”, electro-static
discharge (ESD) and other elements that could potentially damage VMX circuitry.

4) Provide a “Zero Yaw” feature (for Field-Oriented Drive)

The VMX gyro “yaw” angle will drift over time (approximately 1 degree/minute). While this does not normally
impact the robot during a typical FRC match, if using field-oriented drive during extended practice sessions it may be
necessary to periodically “zero” the yaw. Drivers should be provided a simple way (e.g., a joystick button) with which
to zero the yaw.

5) If possible, mount VMX near the center of rotation

Since VMX measures rotation, errors in the measured angles can occur if VMX is mounted at a point not near the
robot center of rotation. For optimal results, VMX should be mounted at the robot’s center of rotation. If VMX cannot
be mounted near the robot’s center of rotation, the offset from the center of rotation can be used to correct the yaw
angle.

6) Use OmniMount if VMX is not mounted horizontally

By default, VMX’s motion processing requires the unit be mounted horizontally, parallel to the earth’s surface; the
yaw (Z) axis should be perpendicular to the earths surface.

If you need to mount VMX vertically or upside-down, you will need to enable the “OmniMount” feature in order to
get reliable, accurate yaw (Z) axis readings.

7) Learn how the sensor behaves by using the navXUI

The navXUI provides insight into the key VMX IMU features, and can help debug issues you may encounter when
integrating VMX onto your robot. Running this user interface is highly recommended for anyone using VMX.

16.1. Basic Usage 191

Studica Robotics, Release 1.0.0

16.2 Advanced Usage

16.2.1 Omnimount

If the VMX default yaw axis orientation isn’t sufficient for your needs, you can use the OmniMount feature to re-
configure the VMX yaw axis, allowing high-accuracy yaw axis readings when VMX is mounted horizontally, verti-
cally, or even upside down.

In certain cases, the VMX axes (Board Frame) may not be oriented exactly as that of the Robot (Body Frame). For
instance, if the VMX circuit board is mounted sideways, the navX-Sensor axes will not be oriented identically to the
Robot.

Transforming VMX Board Frame to Body Frame with OmniMount

VMX’s “OmniMount” feature can transform the VMX X, Y and Z axis sensor data (Board Frame) into Robot Orien-
tation (Body Frame) by detecting which of its three axes is perpendicular to the earth’s surface.

This is similar to how a modern smart phone will rotate the display based upon the phone’s orientation. However
unlike a smart phone, the OmniMount detection of orientation does not happen all the time – since the orientation
should not change while the robot is moving. Rather, each time OmniMount configuration occurs, VMX records
this transformation in persistent flash memory, and will continue to perform this transformation until the transform is
reconfigured.

To configure OmniMount, follow these simple steps:

• Install VMX onto your robot. ENSURE that one of the VMX axes (as shown on the VMX circuit board) is
perpendicular to the earth’s surface. This axis will become the yaw (Z) axis. Note that this axis can either be
pointing away from the earth’s surface, or towards the earth’s surface.

• Press the ‘CAL’ button on the VMX Circuit board AND HOLD THE BUTTON DOWN FOR AT LEAST 5
SECONDS.

• Release the ‘CAL’ button, and verify that the orange ‘CAL’ light flashes for 1 second and then turns off.

• Press the ‘RESET’ button on the VMX circuit board, causing it to restart.

The VMX circuit board will now begin OmniMount auto-calibration. During this auto-calibration period, the orange
‘CAL’ LED will flash repeatedly. This process takes approximately 15 seconds, and requires two things: 1. During
auto-calibration, one of the VMX axes MUST be perpendicular to the earth’s surface. 2. During auto-calibration, the
VMX must be held still. If either of the above conditions is not true, the ‘CAL’ LED will be flashing quickly, indicating
an error. To resolve this error, you must ensure that conditions 1 and 2 are met, at which point the ‘CAL’ LED will
begin flashing slowly, indicating calibration is underway. Once the VMX auto-calibration is complete, the Board
Frame to Body Frame Transform will be stored persistently into VMX flash memory and used until auto-calibration is
run once again.

16.2.2 Magnetometer Calibration

Careful and accurate Magnetometer Calibration is crucial in order to yield valid compass heading, 9-axis heading and
magnetic disturbance detection.

VMX onboard orientation sensors require calibration in order to yield optimal results. We highly recommend taking
the time to understand this calibration process – successful calibration is vital to ensure optimal performance.

Important: Magnetometer Calibration is not typically required in many robotics applications, including Field-
oriented drive. Magnetometer Calibration is a manual process and is only recommended for advanced users who need

192 Chapter 16. Calibrating and Using the navX-sensor IMU

Studica Robotics, Release 1.0.0

to calculate absolute heading.

To install and run the Magnetometer Calibration Tool:

• Download the VMX Tools for Windows latest build.

• Unpack the contents of the vmx-pi.zip file and run the setup.exe program

• Connect a USB cable between the VMX circuit board and your Windows computer.

• From the Windows Menus, click on Kauai Labs->navXMagCalibrator

Calibration Process

The magnetometer calibration encompasses three areas: (a) hard-iron calibration, (b) soft-iron calibration and (c)
magnetic disturbance calibration.

Hard and soft-iron calibration allows the following equation to be used, and corrects for hard and soft-iron effects due
to nearby ferrous metals and magnetic fields. This calibration is necessary in order to achieve valid compass heading
readings:

In addition, using the same calibration data the strength of the Earth’s Magnetic Field is determined. Whenever the
data from the magnetometer indicates the current magnetic field differs from the calibrated Earth’s Magnetic Field
strength by more than the “Magnetic Disturbance Ratio”, a Magnetic Anomaly is declared.

Therefore, careful and accurate Magnetometer Calibration is crucial in order to yield valid compass heading, 9-axis
heading and magnetic disturbance detection.

Magnetometer Calibration can be accomplished with a single, simple calibration process through the use of the Mag-
netometer Calibration Tool. This tool is designed to run on a Windows computer, and communicate to the VMX circuit
board via a USB cable.

16.3 Programming the NavX Sensor

Roscpp

1 //Include the NavX Library
2 #include "navX_ros_wrapper.h"
3

4

5 double yawAngle;
6

7 // Returns the current yaw value (in degrees, from -180 to 180) reported by the NavX
→˓sensor

8 void angle_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 yawAngle = msg->data;
11 }
12

13 int main(int argc, char **argv)
14 {
15 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
16 ros::init(argc, argv, "navx_node");
17

18 /**
(continues on next page)

16.3. Programming the NavX Sensor 193

https://www.kauailabs.com/public_files/vmx-pi/vmx-pi.zip
https://pdocs.kauailabs.com/vmx-pi/software/tools/magnetometer-calibration-tool/
https://pdocs.kauailabs.com/vmx-pi/software/tools/magnetometer-calibration-tool/

Studica Robotics, Release 1.0.0

(continued from previous page)

19 * Constructor
20 * NavX's ros threads (publishers and services) will run asynchronously in the

→˓background
21 */
22 ros::NodeHandle nh; //internal reference to the ROS node that the program will use

→˓to interact with the ROS system
23 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the

→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz
24 ros::Subscriber yawAngle_sub;
25

26 navXROSWrapper navx(&nh, &vmx);
27

28 // Subscribing to NavX angle topic to access the angle data
29 yawAngle_sub = nh.subscribe("navx/yaw", 1, angle_callback);
30

31 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

32

33 return 0;
34 }

Important: Subscribe to NavX topics to access the data being published and write callbacks to pass messages
between various processes.

Note: Calling the frcKillRobot.sh script is necessary since the VMXPi HAL uses the pigpio library, which
unfortunately can only be used in one process. Thus, everything that interfaces with the VMXPi must be run on the
same executable. For more information on programming with ROS, refer to: ROS Tutorials.

194 Chapter 16. Calibrating and Using the navX-sensor IMU

http://wiki.ros.org/ROS/Tutorials

CHAPTER

SEVENTEEN

UPDATING FIRMWARE

In certain cases you may need to update the VMX firmware; use the following instructions to accomplish updating the
VMX firmware.

17.1 Requirements

• VMX Circuit Board (rev. 5.35 or higher)

• PC with USB 2.0 port running Windows 7 or greater.

• Micro-USB Cable

17.2 Updating the Firmware

• Download the VMX Tools for Windows latest build.

• Unpack the contents of the vmx-pi.zip file and run the setup.exe program, which will install the tools as well as
all necessary device drivers for communicating over USB with the VMX-pi, as well as some additional tools.
In addition, the setup program will install the latest firmware at the following location:

<HomeDirectory>\vmx-pi\firmware

For example, if your user name is Robot, the directory name will be C:UsersRobotvmx-pifirmware.

Within that directory, the firmware file will be named using this pattern:

vmx-pi_X.Y.ZZZ.hex

(X = Major Version Number Y = Minor Version Number Z = Revision Number)

• Press and hold down the “CAL” button on the VMX circuit board. While holding this button down, connect a
USB-micro cable from a Windows PC to the VMX circuit board. Use the micro-usb connector immediately to
the left of the VMX power connector. Applying power when the “CAL” button is held down places the board
into “bootloader” mode, at which point the firmware can be loaded.

• From your Start Menu, select “Kauai Labs” and then click on the VMXFirmwareUpdater menu item, and follow
the directions included in the program.

• Once you have downloaded the firmware, you can use the “Currently-loaded Firmware Version” tab of the
VMXFirmwareUpdater to verify the version number you have just installed.

195

https://www.kauailabs.com/public_files/vmx-pi/vmx-pi.zip

Studica Robotics, Release 1.0.0

196 Chapter 17. Updating Firmware

CHAPTER

EIGHTEEN

VMX OS IMAGE

The VMX contains a specifically built version of raspbian buster that will run on a raspberry pi. The prefered
raspberry pi is the 4B however, it will work on the 3B+ and Zero W.

The OS image can be downloaded here.

Note: The image download is 4GB!

Once downloaded a flashing software is required to flash the image to the SD Card. The recommended software to do
this is Etcher.

Important: It is highly recommended to use a Samsung 32GB EVO Plus micro SD card.

18.1 Flashing

To start flashing the SD card first plug the SD card into your computer. Open Etcher, you will notice that it has auto
detected the SD card. If it has not detected the SD card you can manually select and find it.

Hit Select image and find the SD.img.gz file that was downloaded before.

Flash will now be available. Hit Flash to start flashing the SD card image to the SD card. Note this can take a while
depending on your computer. The image has been compressed from 32GB to 2.07GB, which also helps in the flashing
time.

After flashing Etcher will automatically start to validate the flash to ensure that the flash was successful.

When complete the SD card will be auto ejected and can be stuck directly back into the VMX.

197

https://www.studica.com/tdev/vmx/images/SD.img.gz
https://www.balena.io/etcher

Studica Robotics, Release 1.0.0

198 Chapter 18. VMX OS Image

Studica Robotics, Release 1.0.0

18.1. Flashing 199

Studica Robotics, Release 1.0.0

200 Chapter 18. VMX OS Image

CHAPTER

NINETEEN

TROUBLESHOOTING

19.1 VMX LEDs

VMX provides several LEDS to indicate when it is operating normally and whether certain exceptional conditions are
occuring.

Fig. 1: VMX Normal Operation LED States

During normal operation, four (4) Green LEDs should be lit, as follows:

LED Location Meaning
S1 Middle Data being received from navX-Sensor
S2 Middle Communication with navX-Sensor occurring
3.3V Middle VMX processor power valid
CAN Status Right CAN Circuitry receiving/sending CAN messages

During Factory and Startup Calibration of the navX-Sensor, the Orange CAL LED will flash. During this time the
VMX must be held still.

If VMX’s External Power Supply (which supplies power to the VMX Power Pins on the FlexDIO Connectors and
Headers, High-Current DIO Header, Analog Input Header and CommDIO Connectors) is flashing, this indicates that
the VMX current protection circuitry is detecting either an over-current or a short-circuit condition.

201

Studica Robotics, Release 1.0.0

Fig. 2: VMX Orange CAL LED (navX-Sensor Factory Calibration in Progress)

Fig. 3: VMX Red Fault LED (Overcurrent or Short Circuit Detected)

202 Chapter 19. Troubleshooting

Studica Robotics, Release 1.0.0

Important: If the Fault LED is flashing, power to the External Power Pins will be removed; this condition must be
resolved before power will be reapplied to these pins.

19.2 navX-Sensor Factory Test

The navX-Sensor Factory Test Procedure verifies correct operation of the circuit board and it’s key components. The
navX-sensor Factory Test Procedure is performed in the factory to verify initial correct operation, and may be run at
any later point in time to re-verify correct operation.

19.2.1 Test Procedure

• Press the “Reset” button on the board to begin executing the firmware self-tests

• Test1 (Reset Button Test): Verify that the “RESET” button successfully causes the software to restart

– Failure indicates a problem w/the “RESET” button or associated pull-up resistor.

• Test2 (Orange/Green LED Test): Verify all LEDs are working. The Orange “CAL” Led and the two Green
“S1” and “S2” LEDs should turn on briefly after the firmware restarts.

– Failure indicates a problem w/one or more of the LEDs or their corresponding current-limiting resistors.

• Test3 (Sensor Selftest): Sensor Selftest. NOTE: The circuit must be still, and it must have the top of the circuit
board pointing directly up (away from the earth), in order to pass successfully. The first time (and only the first
time) the board is started after firmware is reloaded, a self-test will run (for approximately 5 seconds). If this
succeeds, proceed to Test 8. If this fails, the “CAL” Led will continue to flash quickly, and the selftest will be
run again until it passes. If it succeeds, the software will proceed automatically to Test 8 (see below).

– There are two possible reasons for failure of the self test: Communication Failure over I2C bus to the navX-
Sensor. This case is identified by both green “S1” and “S2” LEDs being off while the orange “CAL” LED is
flashing quickly. Sensor not Still or not Flat – or Sensor Failure. This case is identified by the green “S2” LED
being on while the orange “CAL” LED is flashing quickly. Be sure to hold the board still, and be sure the top
of the circuit board points directly up (away from the earth). If the self-test still fails after verifying the board is
still and flat for several seconds, this indicates a problem w/one or more of the sensors on the navX-Sensor.

• Test4 (Sensor Calibration): Inertial Sensor Calibration. The first time the board is started after firmware is
reloaded, and after the selftest has successfully passed, the firmware will perform inertial sensor calibration.
Inertial sensor calibration executes for approximately 20 seconds. During this time, the sensor must be held
still, and should be held flat, and the orange “CAL” LED will flash slowly. Once the calibration is complete, the
orange “CAL” LED will turn off.

– Failure of this test is due to the board not being held still. Re-run the test and be sure to hold the board still.

• Test5 (Normal Operation): Once the Sensor Selftest and Sensor Calibration are complete, the Orange calibra-
tion LED should be OFF, and the S1 and S2 status LEDs should be on.

19.2. navX-Sensor Factory Test 203

Studica Robotics, Release 1.0.0

19.2.2 VMX LED States

CONDITION S1
(GREEN)

S2
(GREEN)

3.3V
(GREEN)

FAULT
(RED)

CAL (OR-
ANGE)

CAN STATUS
(GREEN)

Startup (1 second) On On On Off On Off
Selftest/Accelerometer
Calibration

Off On On Off Fast Flash On

Gyro Calibration On On On Off Slow Flash On
Normal On On On Off Off On

Note: If the S1 LED is off during Gyro Calibration or Normal State, this indicates interrupts are not being received
from the navX-Sensor.

Note: If the S2 LED is off at any time except briefly after Startup, this indicates a problem communicating to the
navx-Sensor over the internal I2C bus.

Note: If the Fault LED is on at any time, this indicates a short between one of the external power and ground pins.

204 Chapter 19. Troubleshooting

CHAPTER

TWENTY

TITAN QUAD

The Titan Quad is a motor controller with four DC motor outputs that operate on the CAN Bus. Developed for World
Skills but adapted for other uses.

20.1 Map

1. Power input. Input requires a 12VDC battery, and two ports are available connected in parallel. Both ports can
be used for increasing the capacity or as a battery in, battery out.

2. Power output. Outputs 12VDC out to other devices such as, VMXpi or Servo Power Block.

3. Voltage indicators. There is a reverse power indicator (red) that will light up if the voltage is connected in
reverse. The other two indicators display the voltage rails 5V and 3.3V.

4. Fusebox. Before voltage can be applied to the motors or power outputs (2), an appropriate fuse must be inserted
into the box. Motors take 20A fuses, and power outputs take 5 - 15A fuses.

5. RGB Status Light.

6. DFU USB - used to communicate with the computer for updates and configuration.

7. CAN-BUS Input - High side (yellow) and Low side (green) inputs.

8. M1 - Motor 1 output.

9. M0 - Motor 0 output.

10. M3 - Motor 3 output.

11. M2 - Motor 2 output.

205

Studica Robotics, Release 1.0.0

12. Boot - used only when an error occurs, and Titan cannot communicate with the computer and needs a firmware
upgrade.

13. NeoPixel - addressable LED output

14. DotStar - addressable LED output

15. Pin 13/ L for LED microcontroller

16. RX/TX - LEDs for microcontroller

17. LED i2c - com port for microcontroller

18. LED USB - used to communicate with the computer for uploading code

19. Encoder port - Quadrature encoder input

20. Limit H - High limit switch input. (Limits are pulled high and use hardware debouncing)

21. Limit L - Low limit switch input. (Limits are pulled high and use hardware debouncing)

20.2 Electrical Characteristics

Table 1: Electrical Characteristics
Function Min Nom Max
Input Voltage 10VDC 12VDC 14VDC
Output Voltage 10VDC 12VDC 14VDC
Motor Output Amperage 0A — 20A
Motor Frequency 0Hz 15.6KHz 20KHz
Encoder Voltage Output 4.5V 5V 5.5V
Limit Switch Output 4.5V 5V 5.5V
LED Voltage Output 4.5V 5V 5.5V
LED Output Amperage 0A — 6A

206 Chapter 20. Titan Quad

CHAPTER

TWENTYONE

PROGRAMMING THE TITAN

21.1 Motor Setup

Java

1 //import the TitanQuad Library
2 import com.studica.frc.TitanQuad;
3

4 //Create the TitanQuad Object
5 private TitanQuad motor;
6

7 //Constuct a new instance
8 motor = new TitanQuad(TITAN_CAN_ID, TITAN_MOTOR_NUMBER);

Note: TITAN_CAN_ID is the CAN id for the Titan, by defualt it is 42. TITAN_MOTOR_NUMBER is the motor port
to be used. Valid range is 0 - 3, this corresponds to the M0 - M3 on the Titan.

C++ (Header)

1 //Include the TitanQuad Library
2 #include <studica/TitanQuad.h>
3

4 //Constuct a new instance
5 private:
6 studica::TitanQuad motor{TITAN_CAN_ID, TITAN_MOTOR_NUMBER};

Note: TITAN_CAN_ID is the CAN id for the Titan, by defualt it is 42. TITAN_MOTOR_NUMBER is the motor port
to be used. Valid range is 0 - 3, this corresponds to the M0 - M3 on the Titan.

Roscpp

1 //Include the TitanQuad Library
2 #include "TitanDriver_ros_wrapper.h"
3

4 int main(int argc, char **argv)
5 {
6 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
7 ros::init(argc, argv, "titan_node");
8

(continues on next page)

207

Studica Robotics, Release 1.0.0

(continued from previous page)

9 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

10 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

11

12 TitanDriverROSWrapper titan(&nh, &vmx);
13

14 ros::spin() //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

15

16 return 0;
17 }

Note: TITAN_CAN_ID is the CAN id for the Titan, by defualt it is 42. TITAN_MOTOR_NUMBER is the motor port
to be used. Valid range is 0 - 3, this corresponds to the M0 - M3 on the Titan.

21.2 Setting Motor Speed

Java

1 /**
2 * Sets the speed of a motor
3 * <p>
4 * @param speed range -1 to 1 (0 stop)
5 */
6 public void setMotorSpeed(double speed)
7 {
8 motor.set(speed);
9 }

C++ (Source)

1 /**
2 * Sets the speed of a motor
3 * <p>
4 * @param speed range -1 to 1 (0 stop)
5 */
6 void ClassName::SetMotorSpeed(double speed)
7 {
8 motor.Set(speed);
9 }

Roscpp

1 /**
2 * Sets the speed of a motor by sending a request to the motor-speed server
3 * speed range -1.0 to 1.0 (0 stop)
4 */
5

6 ros::ServiceClient set_m_speed = nh->serviceClient<vmxpi_ros::MotorSpeed>(
→˓"titan/set_motor_speed");

7

(continues on next page)

208 Chapter 21. Programming the Titan

Studica Robotics, Release 1.0.0

(continued from previous page)

8 vmxpi_ros::MotorSpeed msg;
9

10 msg.request.speed = rightSpeed;
11 msg.request.motor = 0;
12 set_m_speed.call(msg);

Note: This is a demonstration of calling the motor speed service using the set_motor_speed server.

21.3 Full Example

Java

1 package frc.robot.subsystems;
2

3 //Subsystem Base import
4 import edu.wpi.first.wpilibj2.command.SubsystemBase;
5

6 //Titan import
7 import com.studica.frc.TitanQuad;
8

9 public class Example extends SubsystemBase
10 {
11 /**
12 * Motors
13 */
14 private TitanQuad motor;
15

16 public Example()
17 {
18 //Motors
19 motor = new TitanQuad(TITAN_CAN_ID, TITAN_MOTOR_NUMBER);
20 }
21

22 /**
23 * Sets the speed of a motor
24 * <p>
25 * @param speed range -1 to 1 (0 stop)
26 */
27 public void setMotorSpeed(double speed)
28 {
29 motor.set(speed);
30 }
31 }

C++ (Header)

1 #pragma once
2

3 //Include SubsystemBase
4 #include <frc2/command/SubsystemBase.h>
5

6 //Include Titan Library

(continues on next page)

21.3. Full Example 209

Studica Robotics, Release 1.0.0

(continued from previous page)

7 #include "studica/TitanQuad.h"
8

9 class Example : public frc2::SubsystemBase
10 {
11 public:
12 Example();
13 void SetMotorSpeed(double speed);
14

15 private:
16 studica::TitanQuad motor(TITAN_CAN_ID, TITAN_MOTOR_NUMBER);
17 };

C++ (Source)

1 //Include Header
2 #include "subsystems/Example.h"
3

4 //Constructor
5 Example::Example(){}
6

7 /**
8 * Sets the speed of a motor
9 * <p>

10 * @param speed range -1 to 1 (0 stop)
11 */
12 void Example::SetMotorSpeed(double speed)
13 {
14 motor.Set(speed);
15 }

Roscpp

1 //Include the TitanQuad Library
2 #include "TitanDriver_ros_wrapper.h"
3

4 double motor1_speed;
5

6 // Returns the speed of motor 1
7 void motor1_speed_callback(const std_msgs::Float32::ConstPtr& msg)
8 {
9 motor1_speed = msg->data;

10 }
11

12 int main(int argc, char **argv)
13 {
14 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
15 ros::init(argc, argv, "titan_node");
16

17 /**
18 * Constructor
19 * Titan's ros threads (publishers and services) will run asynchronously in the

→˓background
20 */
21

22 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

(continues on next page)

210 Chapter 21. Programming the Titan

Studica Robotics, Release 1.0.0

(continued from previous page)

23 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

24

25 ros::ServiceClient set_m_speed;
26 ros::Subscriber motor1_speed_sub;
27

28 TitanDriverROSWrapper titan(&nh, &vmx);
29

30 /**
31 * Sets the speed of a motor by sending a request to the motor-speed server
32 * speed range -1.0 to 1.0 (0 stop)
33 */
34

35 set_m_speed = nh.serviceClient<vmxpi_ros::MotorSpeed>("titan/set_motor_speed");
36

37 vmxpi_ros::MotorSpeed msg;
38

39 msg.request.speed = 1.0; //Setting the motor 0 speed to 1.0
40 msg.request.motor = 0;
41 set_m_speed.call(msg);
42

43 // Subscribing to Motor 1 speed topic to access the speed data
44 motor1_speed_sub = nh.subscribe("titan/motor1/speed", 1, motor1_speed_callback);
45

46 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

47

48 return 0;
49 }

Important: Subscribe to Titan topics to access the data being published and write callbacks to pass messages between
various processes.

Note: Calling the frcKillRobot.sh script is necessary since the VMXPi HAL uses the pigpio library, which
unfortunately can only be used in one process. Thus, everything that interfaces with the VMXPi must be run on the
same executable. For more information on programming with ROS, refer to: ROS Tutorials.

21.3. Full Example 211

http://wiki.ros.org/ROS/Tutorials

Studica Robotics, Release 1.0.0

212 Chapter 21. Programming the Titan

CHAPTER

TWENTYTWO

DOWNLOAD UPDATE APP

To download the latest update app V2.0.0.14 click here.

Important: This app is still in early development and there will be bugs. Report any bugs here(link not made yet).

After running the installer there will be a prompt as shown below.

Note: Don’t panic it is not a virus!

213

https://www.studica.com/downloads/Studica-Robotics/FRC-WSR/Titan/SCU/SCUSetup.exe

Studica Robotics, Release 1.0.0

Hit more info.

This will then show the Run Anyway button. Hit that button to start the install.

Note: Admin is required.

After accepting admin privileges the EULA will pop up. You can read through it if you wish or hit next.

Hit next for the next few prompts and the install will start. When complete you will see this page.

214 Chapter 22. Download Update App

Studica Robotics, Release 1.0.0

215

Studica Robotics, Release 1.0.0

216 Chapter 22. Download Update App

CHAPTER

TWENTYTHREE

USING THE UPDATE APP

The Studica Update and Config app was created to allow users to get the most out of their TitanQuad motor controller.

23.1 Settings

The landing or Settings page allows for the setting of the custom CAN ID, Encoder Ticks per rev for the motor you
are using, the current limit for the motors, Motor idle mode, S-curve sensitivity, and limit switch control.

When the app finds a valid device, it will be displayed in the drop-down menu.

217

Studica Robotics, Release 1.0.0

Note: The default CAN ID out of the box is 42.

23.1.1 CAN ID

The CAN ID is the unique id of the motor controller on the CAN bus. The valid range is 1 - 62.

23.1.2 Encoder Resolution

Is the counts per revolution of the encoder you are using on your motor. For example, the Studica Maverick has a CPR
of 732, whereas the Pitsco Torquenado has a CPR of 1440.

23.1.3 Current Limit

This is the limit you want for the amount of current to flow to the motors. Valid range 0 - 20A.

23.1.4 Idle Mode

When false, this sets the motors to coast mode, and when high, the motors are in break mode.

23.1.5 S-Curve Sensitivity

Sets the sensitivity level of the S-Curve formula.

23.1.6 Limit Switches

Control panel for limit switch configuration. There are two limit switch ports per motor on the Titan, a high and a low.

Parameters

• Enable - simple enable and disable

• NO/NC - let the microcontroller know if you are using a NO contact or a NC contact (inverts the output)

• Automatic Bounce back - upon making contact with the limit switch, the motor will move in the opposite
direction just a bit.

23.1.7 Save Configuration

Saves the current settings to the TitanQuad. A prompt will confirm that settings have been saved.

218 Chapter 23. Using the Update App

Studica Robotics, Release 1.0.0

23.1.8 Restore Factory Defaults

Will restore the TitanQuad to it’s recommended factory settings.

23.2 Firmware

Important: Internet connection is required to download firmware!

Every so often, a firmware upgrade is required to fix a bug or include new functionality.

To update the firmware, navigate to the firmware tab and then hit check for updates.

Note: If the button is greyed out, you are not connected to the TitanQuad, hit connect in the upper right-hand corner.

A prompt will appear as it checks the version on the TitanQuad to the server version.

If there is an update, another prompt will ask if you would like to download the new firmware.

Once downloaded, you can hit Upgrade Firmware to flash the new firmware to the TitanQuad.

Note: To tell if the TitanQuad is in update mode check to see if the power indicators are green and the status light is
off.

When complete, there will be an indicator saying that the firmware upgraded was completed.

23.3 System Info

System Information is used for diagnosing and contacting support.

Important: The Unique ID is required for any support tickets.

23.2. Firmware 219

Studica Robotics, Release 1.0.0

220 Chapter 23. Using the Update App

Studica Robotics, Release 1.0.0

23.3. System Info 221

Studica Robotics, Release 1.0.0

222 Chapter 23. Using the Update App

Studica Robotics, Release 1.0.0

23.3. System Info 223

Studica Robotics, Release 1.0.0

23.4 About

Necessary information about the app.

224 Chapter 23. Using the Update App

CHAPTER

TWENTYFOUR

TITAN STATUS LIGHT

Below are the various status light blink codes and the meaning behind them.

Table 1: Status Light Blink Codes
Function Blink 1 Blink 2 Blink 3

Titan Off / Update

No Communication

CAN Detected, Robot Disabled

CAN Detected, Robot Enabled

Fault Detected

24.1 Titan Off / Update

When the Titan is off, there will be no flashing light. The light will also be off if set to update mode. If the Titan is on,
not in update mode, and the light is off, there could be a problem with the microcontroller or the LED.

24.2 No Communication

Is typically seen during bootup. When the Titan receives any CAN packet that is not blocked by the filter, the flashing
blue will switch over to CAN Detected. If the light is still flashing blue when it should be in CAN Detected, either the
CAN ID on the Titan is set incorrectly or the CAN ID set in the robot code is incorrect.

Important: If the CAN ID on the Titan is changed through the config app, the Titan needs to be rebooted for the
configuration on the Titan to be set correctly.

225

Studica Robotics, Release 1.0.0

24.3 CAN Detected, Robot Disabled

The flashing lights of RED, GREEN, BLUE, resembles that the CAN bus is detected; however, the robot is disabled.
To get out of this state, the robot must be enabled via the driver station. If the robot is enabled and the status light is
still showing this state, there is no communication between the driver station and the VMXpi.

24.4 CAN Detected, Robot Enabled

The blinking purple displays that the robot is enabled and allows for the motors to be moved.

24.5 Fault Detected

This state will occur if there is a fault error on one of the gates for driving the motors. This could be but not limited
to: thermal shutdown, current overflow, voltage cutoff, and gate failure.

226 Chapter 24. Titan Status Light

CHAPTER

TWENTYFIVE

TROUBLESHOOTING

Page to describe Titan troubleshooting problems

227

Studica Robotics, Release 1.0.0

228 Chapter 25. Troubleshooting

CHAPTER

TWENTYSIX

COBRA

The Cobra Line Follower provides an array of line IR reflective sensors to be used for detecting a line. The Cobra uses
four QRE1113 sensors for detecting the line.

Table 1: Electrical Characteristics
Function Min Nom Max
Input Voltage 3.3VDC 5VDC 5VDC
Current 25mA 70mA 100mA
Sensing Distance 2mm 3mm —

229

Studica Robotics, Release 1.0.0

26.1 Analog Module

To plug the Cobra into the VMXpi the analog module is required.

The Cobra will plug directly into the analog module. The module will then use the provided JST SH to JST GH cable
to connect to the i2c port on the VMXpi.

26.2 Programming the Cobra

Java

1 //import the Cobra Library
2 import com.studica.frc.Cobra;
3

4 //Create the Cobra Object
5 private Cobra cobra;
6

7 //Constuct a new instance
8 cobra = new Cobra();
9 // or if sensor is using 3.3V

10 cobra = new Cobra(3.3F);
11

12 //Can then use these accssors to get data
13 cobra.getVoltage(channel); //returns a float
14 cobra.getRawValue(channel); //returns a double

The accessor methods will output either the voltage (0 - 5V) or the raw ADC value (0 - 2047).

230 Chapter 26. Cobra

Studica Robotics, Release 1.0.0

C++

1 //Include the Cobra Library
2 #include "studica/Cobra.h"
3

4 //Constructors
5 studica::Cobra cobra{};
6 // or if sensor is using 3.3V
7 studica::Cobra cobra{3.3F};
8

9 //Use these to access data
10 cobra.GetVoltage(channel); //returns a float
11 cobra.GetRawValue(channel); //returns a double

The accessor functions will output either the voltage (0 - 5V) or the raw ADC value (0 - 2047).

Roscpp

1 //Include the Cobra Library
2 #include "Cobra_ros.h"
3

4

5 double channel_1_V;
6

7 // Returns the channel 1 voltage value reported by the Cobra sensor
8 void c1_v_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 channel_1_V = msg->data;
11 }
12

13 int main(int argc, char **argv)
14 {
15 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
16 ros::init(argc, argv, "cobra_node");
17

18 /**
19 * Constructor
20 * Cobra's ros threads (publishers and services) will run asynchronously in the

→˓background
21 */
22 ros::NodeHandle nh; //internal reference to the ROS node that the program will use

→˓to interact with the ROS system
23 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the

→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz
24

25 ros::Subscriber c1_v_sub;
26

27 CobraROS cobra(&nh, &vmx); //default device address is 0x48 and default voltage is
→˓5.0F

28 // or can use
29 CobraROS cobra(&nh, &vmx, deviceAddress);
30 // or if sensor is using 3.3V, refVoltage(3.3F)
31 CobraROS cobra(&nh, &vmx, deviceAddress, refVoltage);
32

33 // Use these to directly access data
34 float voltage = cobra.GetVoltage(channel); //returns a float
35 int raw_cobra = cobra.GetRawValue(channel); //returns an int

(continues on next page)

26.2. Programming the Cobra 231

Studica Robotics, Release 1.0.0

(continued from previous page)

36

37 // Subscribing to a Cobra voltage topic to access the voltage data
38 c1_v_sub = nh.subscribe("cobra/c1/voltage", 1, c1_v_callback);
39

40 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

41

42 return 0;
43 }

The accessor functions will output either the voltage (0 - 5V) or the raw ADC value (0 - 2047).

Important: Subscribe to Cobra topics to access the data being published and write callbacks to pass messages
between various processes.

Note: Calling the frcKillRobot.sh script is necessary since the VMXPi HAL uses the pigpio library, which
unfortunately can only be used in one process. Thus, everything that interfaces with the VMXPi must be run on the
same executable. For more information on programming with ROS, refer to: ROS Tutorials.

232 Chapter 26. Cobra

http://wiki.ros.org/ROS/Tutorials

CHAPTER

TWENTYSEVEN

ULTRASONIC DISTANCE SENSOR

The Ultrasonic Distance Sensor has been updated from a 3-pin to a 4-pin sensor. This was done to create better
compatiblity between multiple different control systems.

Table 1: Electrical Characteristics
Function Min Nom Max
Input Voltage — — 5VDC
Current — 15mA —
Range 2cm — 400cm
Measure Angle — 15° —
Frequency — 40Hz —
Trigger Pulse — 10S TTL —

233

Studica Robotics, Release 1.0.0

27.1 Programming the Ultrasonic Distance Sensor

Java

1 //import the Ultrasonic Library
2 import edu.wpi.first.wpilibj.Ultrasonic;
3

4 //Create the Ultrasonic Object
5 private Ultrasonic sonar;
6

7 //Constuct a new instance
8 sonar = new Ultrasonic(Trigger, Echo);
9

10 //Create an accessor method
11 public double getDistance()
12 {
13 return sonar.getRangeInches();
14 // or can use
15 return sonar.getRangeMM();
16 }

The accessor methods will then output the range in either inches or mm.

Note: The valid digital pairs for Trigger and Echo pins are (Trigger, Echo) (0,1), (2,3), (4,5), (6,7), (8,
9), (10,11)

C++

1 //Include the Ultrasonic Library
2 #include "frc/Ultrasonic.h"
3

4 //Constructors
5 frc::Ultrasonic sonar{Trigger, Echo};
6

7 //Create an accessor function
8 double getDistance(void)
9 {

10 return sonar.GetRangeInches();
11 // or can use
12 return sonar.GetRangeMM();
13 }

The accessor functions will then output the range in either inches or mm.

Note: The valid digital pairs for Trigger and Echo pins are (Trigger, Echo) (0,1), (2,3), (4,5), (6,7), (8,
9), (10,11)

Roscpp

1 //Include the Ultrasonic Library
2 #include "Ultrasonic_ros.h"
3

4

5 double ultrasonic_cm;

(continues on next page)

234 Chapter 27. Ultrasonic Distance Sensor

Studica Robotics, Release 1.0.0

(continued from previous page)

6

7 // Returns the distance value reported by the Ultrasonic Distance sensor
8 void ultrasonic_cm_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 ultrasonic_cm = msg->data;
11 }
12

13 int main(int argc, char **argv)
14 {
15 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
16 ros::init(argc, argv, "ultrasonic_node");
17

18 /**
19 * Constructor
20 * Ultrasonic's ros threads (publishers and services) will run asynchronously in

→˓the background
21 */
22

23 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

24 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

25

26 ros::Subscriber ultrasonicCM_sub;
27

28 UltrasonicROS ultrasonic(&nh, &vmx, 8, 9); //channel_index_out(8), channel_index_
→˓in(9)

29 ultrasonic.Ultrasonic(); //Sends an ultrasonic pulse for the ultrasonic object to
→˓read

30

31 // Use these to directly access data
32 uint32_t raw_distance = ultrasonic.GetRawValue(); // returns distance in

→˓microseconds
33 // or can use
34 uint32_t cm_distance = ultrasonic.GetDistanceCM(raw_distance); //converts

→˓microsecond distance from GetRawValue() to CM
35 // or can use
36 uint32_t inch_distance = ultrasonic.GetDistanceIN(raw_distance); //converts

→˓microsecond distance from GetRawValue() to IN
37

38 // Subscribing to Ultrasonic distance topic to access the distance data
39 ultrasonicCM_sub = nh.subscribe("channel/9/ultrasonic/dist/cm", 1, ultrasonic_cm_

→˓callback); //This is subscribing to channel 9, which is the input channel set in
→˓the constructor

40

41 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

42

43 return 0;
44 }

The accessor functions will then output the range in either microseconds, inches, or cm.

Important: The valid digital pairs for Trigger and Echo pins are (Trigger, Echo) (0,1), (2,3), (4,5), (6,7),
(8, 9), (10,11). Subscribe to Ultrasonic topics to access the data being published and write callbacks to pass

27.1. Programming the Ultrasonic Distance Sensor 235

Studica Robotics, Release 1.0.0

messages between various processes.

Note: Calling the frcKillRobot.sh script is necessary since the VMXPi HAL uses the pigpio library, which
unfortunately can only be used in one process. Thus, everything that interfaces with the VMXPi must be run on the
same executable. For more information on programming with ROS, refer to: ROS Tutorials.

236 Chapter 27. Ultrasonic Distance Sensor

http://wiki.ros.org/ROS/Tutorials

CHAPTER

TWENTYEIGHT

SHARP IR DISTANCE SENSOR

The Sharp GP2Y0A21YK is one of the most reliable and accurate sensors in the collection. The Sharp IR has many
benefits that make it one of the best sensors for a robot for distance tracking.

Table 1: Electrical Characteristics
Function Min Nom Max
Input Voltage 4.5VDC 5V 7VDC
Output Voltage -0.3VDC — VIN + 0.3VDC
Sensing Range 10cm — 80cm
Current — 30mA 40mA
Operating Temperature -10°C — 60°C
Storage Temperature -40°C — 70°C

237

Studica Robotics, Release 1.0.0

28.1 Programming the Sharp IR Sensor

Java

1 //import the Analog Library
2 import edu.wpi.first.wpilibj.AnalogInput;
3

4 //Create the Analog Object
5 private AnalogInput sharp;
6

7 //Constuct a new instance
8 sharp = new AnalogInput(port);
9

10 //Create an accessor method
11 public double getDistance()
12 {
13 return (Math.pow(sharp.getAverageVoltage(), -1.2045)) * 27.726;
14 }

The accessor method will output the range in cm.

Note: The valid Analog ports are 0-3

C++

1 //Include the Analog and Math Library
2 #include "frc/AnalogInput.h"
3 #include <cmath>
4

5 //Constructors
6 frc::AnalogInput sharp{port};
7

8 //Create an accessor function
9 double getDistance(void)

10 {
11 return (pow(sharp.GetAverageVoltage(), -1.2045)) * 27.726;
12 }

The accessor function will output the range in cm.

Note: The valid Analog ports are 0-3

Roscpp

1 //Include the Sharp Library
2 #include "Sharp_ros.h"
3

4

5 double sharp_dist;
6

7 // Returns the distance value reported by the Sharp IR sensor
8 void sharp_dist_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 sharp_dist = msg->data;

(continues on next page)

238 Chapter 28. Sharp IR Distance Sensor

Studica Robotics, Release 1.0.0

(continued from previous page)

11 }
12

13 int main(int argc, char **argv)
14 {
15 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
16 ros::init(argc, argv, "sharp_node");
17

18 /**
19 * Constructor
20 * Sharp's ros threads (publishers and services) will run asynchronously in the

→˓background
21 */
22

23 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

24 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

25

26 ros::Subscriber sharpDist_sub;
27

28 SharpROS sharp(&nh, &vmx);
29 // or can use
30 SharpROS sharp(&nh, &vmx, channel);
31

32 //Use these to directly access the data
33 double dist_cm = sharp.GetIRDistance(); //converts the average voltage read,

→˓outputs the range in cm
34 double voltage = sharp.GetRawVoltage(); //returns the average voltage
35

36 // Subscribing to Sharp distance topic to access the distance data
37 sharpDist_sub = nh.subscribe("channel/22/sharp_ir/dist", 1, sharp_dist_callback);
38

39 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

40

41 return 0;
42 }

The valid Analog channels are 22-25. These are different from the WPI Analog Input Channels.

Important: Subscribe to Sharp topics to access the data being published and write callbacks to pass messages
between various processes.

Note: Calling the frcKillRobot.sh script is necessary since the VMXPi HAL uses the pigpio library, which
unfortunately can only be used in one process. Thus, everything that interfaces with the VMXPi must be run on the
same executable. For more information on programming with ROS, refer to: ROS Tutorials.

28.1. Programming the Sharp IR Sensor 239

http://wiki.ros.org/ROS/Tutorials

Studica Robotics, Release 1.0.0

240 Chapter 28. Sharp IR Distance Sensor

CHAPTER

TWENTYNINE

LIMIT SWITCHES

29.1 Reading a Digital Input

Java

1 //import the DigitalInput Library
2 import com.wpi.first.wpilibj.DigitalInput;
3

4 //Create the DigitalInput Object
5 private DigitalInput input;
6

7 //Constuct a new instance
8 input = new DigitalInput(port);
9

10 //Can then use these accssor to get data
11 input.get(); //Will return true for a high signal and false for a low signal

C++

1 //Include the DigitalInput Library
2 #include "frc/DigitalInput.h"
3

4 //Constructors
5 frc::DigitalInput input{port};
6

7 //Use these to access data
8 input.Get(); //Will return true for a high signal and false for a low signal

Roscpp

1 //Include the DigitalInput Library
2 #include "DI_ros.h"
3

4 int main(int argc, char **argv)
5 {
6 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
7 ros::init(argc, argv, "digitalin_node");
8

9 /**
10 * Constructors
11 * Create the DigitalInput object
12 * DI ros threads (publishers and services) will run asynchronously in the

→˓background

(continues on next page)

241

Studica Robotics, Release 1.0.0

(continued from previous page)

13 */
14

15 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

16 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

17

18 DigitalInputROS digital_in(&nh, &vmx, channel);
19

20 digital_in.Get(); //Will return true for a high signal and false for a low signal
21

22 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

23

24 return 0;
25 }

Important: Subscribe to DI topics to access the data being published and write callbacks to pass messages between
various processes.

242 Chapter 29. Limit Switches

CHAPTER

THIRTY

ENCODERS

Encoders are a sensor placed normally on a shaft to provide feedback to controller. This feedback allows for the
detection of position, speed and direction of motion control system. There are two types of encoders; absolute and
incremental. Absolute encoders report back a location specfic position. Incremental encoders only indicate that there
has been a change in postion and what that change was. In robotics we tend to mostly use incremental encoders as
they are easier to use and have some more benefical advandages than that of the absolute encoder.

The encoders in the worldskills collection are built into the motors already. This makes it easier for designing drive
systems as an external encoder does not need to be designed in.

30.1 Distance Formula

30.1.1 Math

There is a lot of math assosiated with encoders. Before the encoder class can be used the distance per tick has to be
calculated. The formula can be given as:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑒𝑟𝑇 𝑖𝑐𝑘 =
2𝜋𝑟

𝑡𝑖𝑐𝑘𝑠𝑃𝑒𝑟𝑅𝑒𝑣 * 𝑔𝑒𝑎𝑟𝑅𝑎𝑡𝑖𝑜
(30.1)

Where:

• r = wheel radius

• ticksPerRev = encoder pulses on the output shaft of the motor

• gearRatio = an external gear ratio used.

Example

Lets look at an example using the Maverick with the 100mm omni wheel attached directly on the shaft of the motor.

• r = 51 mm (actual measured value)

• ticksPerRev = 1464 (encoder counts per 1 revolution of the motor output shaft)

• gearRatio = 1:1

243

Studica Robotics, Release 1.0.0

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑒𝑟𝑇 𝑖𝑐𝑘 =
2𝜋𝑟

𝑡𝑖𝑐𝑘𝑠𝑃𝑒𝑟𝑅𝑒𝑣 * 𝑔𝑒𝑎𝑟𝑅𝑎𝑡𝑖𝑜
=

2𝜋51

1464 * 1
=

102𝜋

1464
= 0.218881455(30.2)

Therefor we can conculde that the distancePerTick for the Maverick using the 100mm omni wheels is 0.218881455.

Application

Now that we have the distancePerTick we can calculate the distance traveled. This is simply formulated by:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑒𝑟𝑇 𝑖𝑐𝑘 * 𝑒𝑛𝑐𝑜𝑑𝑒𝑟𝐶𝑜𝑢𝑛𝑡

Where:

• distancePerTick = 0.218881455

• encoderCount = is the incremental count from the encoder

Lets look at a few examples:

One Wheel Rotation

encoderCount = 1464

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.218881455 * 1464 = 320.44𝑚𝑚

Note: The distance measured is in mm as the radius was specficed in mm.

Ten Wheel Rotations

encoderCount = 14640

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0.218881455 * 14640 = 3204.43𝑚𝑚

30.1.2 Code

Now that we know the math behind it, let’s look at how to program the encoder for distance measurement.

Java

Constants.java

1 /**
2 * Motor Constants
3 */
4 public static final int TITAN_ID = 42;
5 public static final int MOTOR = 2;
6

7 /**
8 * Encoder Constants
9 */

10

11 //Radius of drive wheel in mm

(continues on next page)

244 Chapter 30. Encoders

Studica Robotics, Release 1.0.0

(continued from previous page)

12 public static final int wheelRadius = 51;
13

14 //Encoder pulses per rotation of motor shaft
15 public static final int pulsePerRotation = 1464;
16

17 //Gear ratio between motor shaft and output shaft
18 public static final double gearRatio = 1/1;
19

20 //Pulse per rotation combined with gear ratio
21 public static final double encoderPulseRatio = pulsePerRotation * gearRatio;
22

23 //Distance per tick
24 public static final double distancePerTick = (Math.PI * 2 * wheelRadius) /

→˓encoderPulseRatio;

Subsystem

1 import com.studica.frc.TitanQuad;
2 import com.studica.frc.TitanQuadEncoder;
3

4 public class Subsystem
5 {
6 /**
7 * Motors
8 */
9 private TitanQuad motor;

10

11 /**
12 * Sensors
13 */
14 private TitanQuadEncoder encoder;
15

16 public Subsystem()
17 {
18 //Motors
19 motor = new TitanQuad(Constants.TITAN_ID, Constants.MOTOR);
20

21 //Sensors
22 encoder = new TitanQuadEncoder(motor, Constants.MOTOR, Constants.

→˓distancePerTick);
23 }
24

25 /**
26 * Gets the distance traveled of the motor
27 * <p>
28 * @return the distance traveled
29 */
30 public double getEncoderDistance()
31 {
32 return encoder.getEncoderDistance();
33 }
34 }

C++ (Header)

1 #include <studica/TitanQuad.h>
2 #include <studica/TitanQuadEncoder.h>

(continues on next page)

30.1. Distance Formula 245

Studica Robotics, Release 1.0.0

(continued from previous page)

3

4 #include <cmath>
5

6 class Subsystem : public frc2::SubsystemBase
7 {
8 public:
9 Subsystem();

10

11 double GetEncoderDistance (void);
12

13 private:
14 /**
15 * Motor Constants
16 */
17 #define TITAN_ID 42
18 #define MOTOR_N 2
19

20 /**
21 * Encoder Constants
22 */
23

24 //Radius of drive wheel in mm
25 #define wheelRadius 51
26

27 //Encoder pulses per rotation of motor shaft
28 #define pulsePerRotation 1464
29

30 //Gear ratio between motor shaft and output shaft
31 #define gearRatio 1/1
32

33 //Pulse per rotation combined with gear ratio
34 #define encoderPulseRatio pulsePerRotation * gearRatio
35

36 //Distance per tick
37 #define distancePerTick (M_PI * 2 * wheelRadius) / encoderPulseRatio
38

39 /**
40 * Objects
41 */
42 studica::TitanQuad motor{TITAN_ID, MOTOR_N};
43 studica::TitanQuadEncoder encoder{motor, MOTOR_N, distancePerTick};
44 };

C++ (Source)

1 #include "subsystems/Subsystem.h"
2

3 Subsystem::Subsystem(){};
4

5 /**
6 * Gets the distance traveled of the motor
7 * <p>
8 * @return the distance traveled
9 */

10 double Subsystem::GetEncoderDistance (void)
11 {
12 return encoder.GetEncoderDistance();

(continues on next page)

246 Chapter 30. Encoders

Studica Robotics, Release 1.0.0

(continued from previous page)

13 }

30.2 Speed

Besides distance, the encoder can also provide the speed of the motor. Speed can be represented in two main ways
rpm and m/s. Both have advantages and disadvantages but are also easy to implement.

30.2.1 Rotations Per Minuite (RPM)

The RPM is the number of revolutions of the motor shaft every minute. For example, the Maverick DC Motor has a
nominal RPM of 100. However, all motors will rarely rotate at the same speed. With the encoder, some math and the
RPM can be calculated to use in formulas if required.

Important: The RPM does not consider any gear ratios or the size of the output object, i.e., wheel.

Fortunately, the Titan has an internal RPM count, so no external math is required. It is as simple as calling the
getRPM() functions.

Java

Constants.java

1 /**
2 * Motor Constants
3 */
4 public static final int TITAN_ID = 42;
5 public static final int MOTOR = 2;

Subsystem

1 import com.studica.frc.TitanQuad;
2

3 public class Subsystem
4 {
5 /**
6 * Motors
7 */
8 private TitanQuad motor;
9

10 public Subsystem()
11 {
12 //Motors
13 motor = new TitanQuad(Constants.TITAN_ID, Constants.MOTOR);
14 }
15

16 /**
17 * Gets the RPM of the motor
18 * <p>
19 * @return the RPM of the motor
20 */
21 public double getRPM()
22 {

(continues on next page)

30.2. Speed 247

Studica Robotics, Release 1.0.0

(continued from previous page)

23 return motor.getRPM(Constants.MOTOR);
24 }
25 }

C++ (Header)

1 #include <studica/TitanQuad.h>
2

3 class Subsystem : public frc2::SubsystemBase
4 {
5 public:
6 Subsystem();
7

8 double GetRPM (void);
9

10 private:
11 /**
12 * Motor Constants
13 */
14 #define TITAN_ID 42
15 #define MOTOR_N 2
16

17 /**
18 * Objects
19 */
20 studica::TitanQuad motor{TITAN_ID, MOTOR_N};
21 };

C++ (Source)

1 #include "subsystems/Subsystem.h"
2

3 Subsystem::Subsystem(){};
4

5 /**
6 * Gets the RPM of the motor
7 * <p>
8 * @return the RPM of the motor
9 */

10 double Subsystem::GetRPM (void)
11 {
12 return encoder.GetRPM(MOTOR_N);
13 }

248 Chapter 30. Encoders

Studica Robotics, Release 1.0.0

30.2.2 Tip Speed or Velocity

RPM is excellent to have, but it does not give the actual speed of the object, such as a wheel. RPM only gives the
speed of the motor shaft. In comes a simple formula to convert RPM to Tip Speed or Velocity.

Math

𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝐷𝜋𝑆

60
(30.3)

Where

• D = Diameter of wheel in meters

• = pi

• S = rpm

• 60 = conversion from minutes to seconds

Example

• Diameter of the wheel is 0.102m.

• is .

• S is the nominal speed of the Maverick at 100rpm.

𝑉 𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
0.102 * 𝜋 * 100

60
=

34.0442245

60
= 0.53407𝑚/𝑠(30.4)

Application

When looking at the diagram above, the speed is only 0.0314m/s if using just RPM. When calculating for Y the proper
speed is given at 0.53407m/s. There is a clear difference between the two speeds. This can conclude that while the
RPM is excellent, it is better to incorporate the adjusted Tip Speed or Velocity in equations to give more accuracy.

Attention: The SR-Pro Camera was discontinued and replaced with the 3D-Depth Camera. The depth camera
acts as a normal camera when plugged in via USB. Depth features and more are coming soon. For those not using
the WPILib framework, an SDK is available here for depth features: SDK

30.2. Speed 249

https://www.orbbec.com/developers/orbbec-sdk/

Studica Robotics, Release 1.0.0

250 Chapter 30. Encoders

CHAPTER

THIRTYONE

SR PRO CAMERA

251

Studica Robotics, Release 1.0.0

252 Chapter 31. SR Pro Camera

CHAPTER

THIRTYTWO

INSTALLING THE RIBBON CABLE

There are a few steps required to install the ribbon cable to communicate with the SR Pro camera.

Important: Take your time while completing this tutorial as the ribbon cable is fragile.

32.1 Setup

The first thing is to have the VMX and HDMI to ribbon cable adapter ready, as pictured above.

32.2 Removing the Ribbon Cable from the HDMI Adapter

The CSI holder needs to be opened up to remove the ribbon cable from the HDMI adapter board. As highlighted above
with the red circles, the ribbon cable is held down by a tab that needs to be opened. Gently pull the tab open on either
end to open the CSI holder.

The ribbon cable should now be able to gently be removed.

253

Studica Robotics, Release 1.0.0

254 Chapter 32. Installing the Ribbon Cable

Studica Robotics, Release 1.0.0

32.3 Removing the screws from the VMX

Six M2.5 x 8mm Philips head screws hold the VMX together. All six screws need to be removed to service the VMX.

To start, flip the VMX over and remove the four screws located on the bottom of the VMX, as shown above.

Important: Place the screws in a safe spot where they won’t get lost.

The last two screws are located inside the VMX next to the IO headers (highlighted above). To access the inside,
remove the lid of the VMX and set it aside.

The VMX can now be removed from the case.

32.3. Removing the screws from the VMX 255

Studica Robotics, Release 1.0.0

256 Chapter 32. Installing the Ribbon Cable

Studica Robotics, Release 1.0.0

32.4 Disassembling the VMX Boards

The VMX consists of two boards, the VMX-pi and the Raspberry Pi4 B+. The two boards are separated by a 12mm
standoff and a GPIO header, as pictured above. Gently separate the two boards to get access to the Raspberry Pi.

The two boards separated are shown above.

32.5 Plugging in the Ribbon Cable

The ribbon cable will sit inside the Raspberry Pi camera CSI connector.

The CSI connector on the Raspberry Pi is highlighted above.

Note: Do not use the other CSI connector on the Raspberry Pi as that is for display output.

Open the CSI connector, as shown above. If the CSI connector is closed, the ribbon cable will not be able to be seated.

32.4. Disassembling the VMX Boards 257

Studica Robotics, Release 1.0.0

258 Chapter 32. Installing the Ribbon Cable

Studica Robotics, Release 1.0.0

When open, insert the ribbon cable.

Warning: Pay attention to the orientation of the pins on the ribbon cable. If installed incorrectly, it will short the
camera or the pi itself. In this case, the pins on the ribbon cable should be facing the micro HDMI ports.

The CSI connector tab can now be pushed down to lock the ribbon cable in place. Give the ribbon cable a gentle tug
to make sure it is secure.

32.6 Reassembling the VMX

Notice the slot pictured above on the VMX-pi board. This is where the ribbon cable will slot through when the board
is placed back onto the Raspberry Pi.

When the boards are placed back together, it should look like the above two pictures.

Place the VMX back into the bottom case and install the two screws highlighted above. Once the two screws are in
place, turn the VMX on to its side and install the bottom 4 screws.

32.6. Reassembling the VMX 259

Studica Robotics, Release 1.0.0

260 Chapter 32. Installing the Ribbon Cable

Studica Robotics, Release 1.0.0

The lid can now be installed on the VMX. Note the highlighted area is where the ribbon cable will slot through.

To install the lid, turn it on its side, as shown above.

Turn the lid down to close. Note that the ribbon cable should slide through the slot on the lid before closing.

The VMX is now be assembled with the ribbon cable installed.

32.7 Adding the HDMI Adatper

Note: Pay attention location of the pins on the ribbon cable.

The HDMI Adapter Board is shown above in the correct orientation for the ribbon cable. The CSI connector tab should
be open so that the ribbon cable can be inserted.

Once the ribbon cable is inserted, the tab can be closed. The installation of the ribbon cable into the VMX is now
complete.

32.7. Adding the HDMI Adatper 261

Studica Robotics, Release 1.0.0

262 Chapter 32. Installing the Ribbon Cable

Studica Robotics, Release 1.0.0

32.7. Adding the HDMI Adatper 263

Studica Robotics, Release 1.0.0

264 Chapter 32. Installing the Ribbon Cable

CHAPTER

THIRTYTHREE

READING A BARCODE

This guide will instruct on reading a barcode or QR Code from the VMX and relaying the data back to the robot code.
Follow the pages below in order, to have everything work as intended.

33.1 VMX

The Python Scripts used here can be downloaded from here.

33.1.1 Setup Dependencies on the VMX

Before anything can be done, some packages and dependencies must be installed.

Switching to WiFi Client Mode

To install packages, the VMX must be connected to the internet. The easiest way to do this is to put the VMX into
client mode. Open Terminal and run the command below to enter client mode.

setupWifiClient.sh

This will change the VMX from an access point to a client. In client mode, the VMX can then be connected to your
local WiFi.

Note: The robot manager and connection to the control station does not work in this mode.

Packages to Install

Three packages need to be installed.

265

https://github.com/studica/WorldSkills-Example-Projects/tree/main/Vision/VMX%20Python%20Scripts

Studica Robotics, Release 1.0.0

Pyzbar

This package is used to read the barcode data. In the terminal, run the following commands:

sudo apt-get install libzbar0
sudo pip install pyzbar
sudo pip install pyzbar[scripts]

pynetworktables

This package is what is used to communicate with the robot and shuffleboard.

sudo pip install pynetworktables

Watchdog

This package acts as a watchdog that is used to check filesystem changes. The main reason for this package is that
currently, Pyzbar and pynetworktables do not interact appropriately.

sudo pip install watchdog

Going back to WiFi AP Mode

After these packages are installed, it is good to go back to WiFi AP mode to prevent issues down the line.

setupWifiAP.sh

33.1.2 Barcode Python Script

The script for reading a barcode is quite simple and easy to use. There are five sections to the script, and each is
explained below.

Imports

2 import cv2 as cv
3 from pyzbar.pyzbar import decode

Lines 2 and 3 are the imports required for this script. Line 2 imports open cv, which is used for taking the picture
with the camera. Line 3 imports pyzbar, which is used for decoding the snapshot taken by the camera.

266 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

Variable Initialization

The BarcodeData and BarcodeType variables need to be initialized to prevent an error if no barcode is found.

6 BarcodeData = 'No Barcode Found'
7 BarcodeType = 'null'

Snapping an Image

This section will snap a single image from the camera.

10 cap = cv.VideoCapture(0)
11 cap.set(3, 640) # Width
12 cap.set(4, 480) # Height
13 ret, raw = cap.read()
14 raw = cv.flip(raw, -1)
15 cap.release()

• Line 10 creates the camera and is using port 0

• Line 11 sets the Width

• Line 12 sets the Height

• Line 13 snaps the image

• Line 14 rotates the image 180 as the way the camera is mounted it is upside down

• line 15 closes the camera resources so that the script is not leaving the camera hanging.

Barcode Decoding

In this section, the image will be decoded to reveal barcode data.

18 for barcode in decode(raw):
19 BarcodeData = barcode.data.decode("utf-8")
20 BarocdeType = barcode.type
21 #print("Found {} barcode: {}".format(BarcodeType, BarcodeData)) #For debugging

• Line 18 is the for loop that will run through all the found barcodes.

• Line 19 assigns the barcode data to BarcodeData

• Line 20 assigns the barcode type to BarcodeType

• Line 21 is used as a debug print statement that will print the results to the terminal.

Note: If there are multiple barcodes, it will only take the last one found, as each loop overrides the previous results.

33.1. VMX 267

Studica Robotics, Release 1.0.0

Write to File

A simple text file is used to pass the barcode data from this script to the watchdog script.

23 file = open('/home/pi/barcodes.txt', 'w')
24 file.write(BarcodeData)
25 file.write('/n')
26 file.write(BarcodeType)
27 file.close()

• Line 23 opens the file in write mode

• Line 24 writes the barcode data to the first line of the file

• Line 25 moves the file to the next line

• Line 26 writes the barcode type to the second line of the file

• Line 27 closes the file.

Full Script

1 #imports
2 import cv2 as cv
3 from pyzbar.pyzbar import decode
4

5 #initialize variables to prevent errors if no barcode found
6 BarcodeData = 'No Barcode Found'
7 BarcodeType = 'null'
8

9 # Snap an image
10 cap = cv.VideoCapture(0)
11 cap.set(3, 640) # Width
12 cap.set(4, 480) # Height
13 ret, raw = cap.read()
14 raw = cv.flip(raw, -1)
15 cap.release()
16

17 # process image and output barcode data to file
18 for barcode in decode(raw):
19 BarcodeData = barcode.data.decode("utf-8")
20 BarcodeType = barcode.type
21 #print("Found {} barcode: {}".format(barcode.type, barcode.data.decode("utf-8")))

→˓# For debugging
22

23 file = open('/home/pi/barcodes.txt', 'w')
24 file.write(BarcodeData)
25 file.write('\n')
26 file.write(BarcodeType)
27 file.close()

268 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

33.1.3 Watchdog Listener Script

The watchdog listener monitors changes in the barcodes.txt file and sends those changes back to the robot and shuffle-
board. The watchdog listener is also used to read the networktables and see if a new barcode must be read.

Imports

4 from watchdog.observers import Observer
5 from watchdog.events import FileSystemEventHandler
6 from networktables import NetworkTables
7 from networktables.util import ntproperty
8 import threading
9 import os

There are a few more imports for this script over the barcode script.

• Line 4 is the observer import and is used to create the listener for a file.

• Line 5 is the FileSystemEventHandler which creates functions that check for changes to files

• Line 6 is the main NetworkTables import, used to send and receive info from the robot.

• Line 7 is the ntproperty import and is used to create tables and properties.

• Line 8 is the thread import to create threads.

• Line 9 is the os import and used for sending commands to the terminal.

Create Barcodes File

The watchdog script will be run as a startup script, which makes it a good idea to create the barcodes.txt file if it does
not exist to avoid errors when reading the file.

12 f = open('/home/pi/barcodes.txt', 'w')
13 f.close()

• Line 12 will create the barcodes.txt if it does not exist

• Line 13 closes the file to prevent issues of the file being open when it should be closed

Connect to NetworkTables

Before anything can happen, a connection to NetworkTables needs to be established. NetworkTables does not run
right away and needs some time for the server and client to start. The below code handles this.

15 #Create thread to make sure networktables is connected
16 cond = threading.Condition()
17 notified = [False]
18

19 #Create a listener
20 def connectionListener(connected, info):
21 with cond:
22 notified[0] = True
23 cond.notify()
24

25 #Instantiate NetworkTables

(continues on next page)

33.1. VMX 269

Studica Robotics, Release 1.0.0

(continued from previous page)

26 NetworkTables.initialize(server="10.12.34.2")
27 NetworkTables.addConnectionListener(connectionListener, immediateNotify=True)
28

29 #Wait until connected
30 with cond:
31 if not notified[0]:
32 cond.wait()

The above may look complicated, but it is pretty simple.

• Line 16 creates a conditional thread

• Line 17 creates a boolean array

• Line 20 defines a new function call connectionListener; this function listens for a connection and changes the
condition when connected.

• Lines 21 - 23 is a statement that when connected to update conditions

• Line 26 will initialize a connection

• Line 27 adds a listener to check if connected

• Lines 30 - 32 will hang until a connection is made

Important: Make sure the IP address used in line 26 matches the IP address of the VMX WiFi AP.

Create the Vision Tables

To successfully send data between the watchdog and the robot code, it is good to create a couple of properties to hold
this data. The properties can be read on the watchdog side and the robot side.

35 ntBarcodeData = ntproperty('/Vision/barcodeData', "null")
36 ntBarcodeType = ntproperty('/Vision/barcodeType', "null")
37 ntReadBarcode = ntproperty('/Vision/readBarcode', False)
38

39 #Get Table
40 table = NetworkTables.getTable('Vision')

• Lines 35 & 36 create the barcode properties.

• Line 37 creates the command property used for executing the barcode script for a new barcode.

• Line 40 assigns the Vision table to a variable for later use.

The first value of property is the key and the second is the default value. The default value also creates the property
type. In the above cases ntBarcodeData & ntBarcodeType will be strings, whereas ntReadBarcode is a
boolean.

Note: When creating a table, the key of the table must always start with a /.

270 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

File System Handler

To optimize the code that it does not open, read, close the code continuously. A FileSystemEventHandler can be used.
In this case, the use of watchdog is perfect. This way, nothing will happen unless the file is modified. If there is no
modification to the file, i.e., a new barcode is read, it will do nothing.

43 class MyHandler(FileSystemEventHandler):
44 def on_modified(self, event):
45 try:
46 file = open('./home/pi/barcodes.txt', 'r')
47 table.putString('barcodeData', file.readline())
48 table.putString('barcodeType', file.readline())
49 file.close()
50 except:
51 pass #when file is not created yet
52

53 event_handler = MyHandler()
54 observer = Observer()
55 observer.schedule(event_handler, path='./home/pi/barcodes.txt', recursive=False)
56 observer.start()

• Line 43 creates a class that uses the FileSystemEventHandler

• Line 44 creates the function on_modified which is an extension of the FileSystemEventHandler. This function
will be called when the event handler detects a modification to the file.

• Line 45 & 50 is used to catch errors.

• Line 46 opens the barcodes.txt in read mode.

• Line 47 will read the first line of the file and add it as the barcodeData data.

• Line 48 will read the second line of the file and add it as the barcodeType data.

• Line 49 closes the file to ensure no issues.

• Line 53 creates the event handler

• Line 54 creates the observer

• Line 55 configures the observer with the event handler and file to watch

• Line 56 starts the observer thread

Forever Loop

This script needs to run forever and handle a flag sent from the robot to take a new barcode reading.

59 while(True):
60 if table.getBoolean('readBarcode', False) == True:
61 table.putBoolean('readBarcode', False)
62 os.system('python3 /home/pi/readBarcode.py')
63 try:
64 pass
65 except KeyboardInterrupt:
66 observer.stop()

• Line 59 is the while loop that never ends

• Line 60 checks to see if the robot code is requesting a new barcode scan.

33.1. VMX 271

Studica Robotics, Release 1.0.0

• Line 61 flips the readBarcode flag to False to prevent a double read.

• Line 62 runs the readBarcode.py script

• Lines 63 - 66 are used if the script ever wants to end. In this case, a KeyboardInterrupt is required to end. As
this script will run as a startup script, the observer should never end.

Setting the Script to run as at Startup

Setting the watchdog script to run at startup is very simple.

In terminal open rc.local

sudo nano /etc/rc.local

Scroll to the bottom with the arrow keys.

Above exit 0 put:

python3 /home/pi/watchdogListener.py &

To save, hit CTRL + X then Y and hit Enter.

Important: Including the & at the end will fork the process to the background and prevent other processes from
hanging.

It is now possible to reboot, and the script will be running.

Note: There will be no indication that the script is running.

Full Script

1 #!/usr/bin/python3
2

3 #imports
4 from watchdog.observers import Observer
5 from watchdog.events import FileSystemEventHandler
6 from networktables import NetworkTables
7 from networktables.util import ntproperty
8 import threading
9 import os

10

11 #Create the barcodes file
12 f = open('/home/pi/barcodes.txt', 'w')
13 f.close()
14

15 #Create thread to make sure networktables is connected
16 cond = threading.Condition()
17 notified = [False]
18

19 #Create a listener
20 def connectionListener(connected, info):
21 with cond:

(continues on next page)

272 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

(continued from previous page)

22 notified[0] = True
23 cond.notify()
24

25 #Instantiate NetworkTables
26 NetworkTables.initialize(server="10.12.34.2")
27 NetworkTables.addConnectionListener(connectionListener, immediateNotify=True)
28

29 #Wait until connected
30 with cond:
31 if not notified[0]:
32 cond.wait()
33

34 #Create the vision Table
35 ntBarcodeData = ntproperty('/Vision/barcodeData', "null")
36 ntBarcodeType = ntproperty('/Vision/barcodeType', "null")
37 ntReadBarcode = ntproperty('/Vision/readBarcode', False)
38

39 #Get Table
40 table = NetworkTables.getTable('Vision')
41

42 #Create the system handler
43 class MyHandler(FileSystemEventHandler):
44 def on_modified(self, event):
45 try:
46 file = open('./home/pi/barcodes.txt', 'r')
47 table.putString('barcodeData', file.readline())
48 table.putString('barcodeType', file.readline())
49 file.close()
50 except:
51 pass #when file is not created yet
52

53 event_handler = MyHandler()
54 observer = Observer()
55 observer.schedule(event_handler, path='./home/pi/barcodes.txt', recursive=False)
56 observer.start()
57

58 #The forever loop
59 while(True):
60 if table.getBoolean('readBarcode', False) == True:
61 table.putBoolean('readBarcode', False)
62 os.system('python3 /home/pi/readBarcode.py')
63 try:
64 pass
65 except KeyboardInterrupt:
66 observer.stop()

33.1. VMX 273

Studica Robotics, Release 1.0.0

33.2 VS Code

The VS Code Project used here can be downloaded from here.

33.2.1 Vision Subsystem

The Vision Subsystem will house the core of the code. It is always a good idea to have a Vision subsystem that will
hold all the getters and setters for the vision on the robot.

VisionSubsystem.java

Imports

1 package frc.robot.subsystems;
2

3 import edu.wpi.first.networktables.NetworkTable;
4 import edu.wpi.first.networktables.NetworkTableEntry;
5 import edu.wpi.first.networktables.NetworkTableInstance;
6 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
7 import edu.wpi.first.wpilibj2.command.SubsystemBase;

• Line 1 is the package setup, and will assign this class to the package.

• Line 3 is the import for networktables; this allows us to talk with the vision Scripts.

• Line 4 is the import for network table entries and allows us to read the data from the table.

• Line 5 is the import for the networktables instance and is used to get the table.

• Line 6 is the import for SmartDashboard, which will be used to put values for user display.

• Line 7 is the import for SubsystemBase, which is required to have this class become a subsystem.

Class

9 public class VisionSubsystem extends SubsystemBase

• Line 9 creates the class VisionSubsystem and extends SubsystemBase to have this class be a subsystem.

Objects

11 private NetworkTableInstance inst = NetworkTableInstance.getDefault();
12 private NetworkTable table = inst.getTable("Vision");
13 private NetworkTableEntry data;

• Line 11 creates the NetworkTableInstance

• Line 12 creates the table

• Line 13 creates the table entry reference

274 Chapter 33. Reading a Barcode

https://github.com/studica/WorldSkills-Example-Projects/tree/main/Vision/Barcode%20Reader

Studica Robotics, Release 1.0.0

Constructor

15 public VisionSubsystem()
16 {
17 SmartDashboard.putBoolean("Get New Barcode", false);
18 }

• Line 15 is the constructor and will create the VisionSubsystem when called.

• Line 17 Will create an entry in the smartdashboard called Get New Barcode and sets its default value to
false.

Setter

20 public void readBarcode()
21 {
22 table.getEntry("readBarcode").setBoolean(true);
23 }

• Line 20 is the setter that is called when a new barcode should be read.

• Line 22 will update the readBarcode flag in networktables to true. This, in turn, will tell the vision scripts to
read a new barcode and update the data keys.

Getter

25 public void printBarcode()
26 {
27 data = table.getEntry("barcodeData");
28 SmartDashboard.putString("Barcode Data", data.getString("Nothing was read"));
29 }

• Line 25 is the method that will be called to get the current value of the barcodeData entry.

• Line 27 assigns the entry to the data object.

• Line 28 places the string value of data to the dashboard.

Periodic Loop

The periodic loop is used to check the current value of the barcodeData entry for every robot loop.

31 @Override
32 public void periodic()
33 {
34 printBarcode();
35 }

• Line 31 is the required Override to tell the compiler to use this periodic method and not the one built into
SubsystemBase.

• Line 32 is the periodic method.

• Line 34 will call the printBarcode method every robot loop.

33.2. VS Code 275

Studica Robotics, Release 1.0.0

Full Subsystem Code

1 package frc.robot.subsystems;
2

3 import edu.wpi.first.networktables.NetworkTable;
4 import edu.wpi.first.networktables.NetworkTableEntry;
5 import edu.wpi.first.networktables.NetworkTableInstance;
6 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
7 import edu.wpi.first.wpilibj2.command.SubsystemBase;
8

9 public class VisionSubsystem extends SubsystemBase
10 {
11 private NetworkTableInstance inst = NetworkTableInstance.getDefault();
12 private NetworkTable table = inst.getTable("Vision");
13 private NetworkTableEntry data;
14

15 public VisionSubsystem()
16 {
17 SmartDashboard.putBoolean("Get New Barcode", false);
18 }
19

20 public void readBarcode()
21 {
22 table.getEntry("readBarcode").setBoolean(true);
23 }
24

25 public void printBarcode()
26 {
27 data = table.getEntry("barcodeData");
28 SmartDashboard.putString("Barcode Data", data.getString("Nothing was read"));
29 }
30

31 @Override
32 public void periodic()
33 {
34 printBarcode();
35 }
36 }

33.2.2 Robot Container Part 1

The Robot Container is used to create an instance of subsystems that can be shared across commands. This saves
resources and speeds up the processes. In part 1, only the subsystem will be declared and instantiated.

Imports

8 package frc.robot;
9

10 import frc.robot.subsystems.VisionSubsystem;

• Line 8 adds the robot container to the robot package.

• Line 10 imports the VisionSubsystem.

276 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

Class

18 public class RobotContainer

• Line 18 creates the class.

Objects

21 public static VisionSubsystem vision;

• Line 21 creates the VisionSubsystem object.

Constructor

26 public RobotContainer()

• Line 26 is the constructor for the RobotContainer class.

Instantiation

28 vision = new VisionSubsystem();

• Line 28 creates the instance of VisionSubsystem and assigns it to vision.

Full Code Part 1

1 /*--*/
2 /* Copyright (c) 2018-2019 FIRST. All Rights Reserved. */
3 /* Open Source Software - may be modified and shared by FRC teams. The code */
4 /* must be accompanied by the FIRST BSD license file in the root directory of */
5 /* the project. */
6 /*--*/
7

8 package frc.robot;
9

10 import frc.robot.subsystems.VisionSubsystem;
11

12 /**
13 * This class is where the bulk of the robot should be declared. Since Command-based

→˓is a
14 * "declarative" paradigm, very little robot logic should actually be handled in the

→˓{@link Robot}
15 * periodic methods (other than the scheduler calls). Instead, the structure of the

→˓robot
16 * (including subsystems, commands, and button mappings) should be declared here.
17 */
18 public class RobotContainer
19 {
20 // The robot's subsystems and commands are defined here...
21 public static VisionSubsystem vision;
22

(continues on next page)

33.2. VS Code 277

Studica Robotics, Release 1.0.0

(continued from previous page)

23 /**
24 * The container for the robot. Contains subsystems, OI devices, and commands.
25 */
26 public RobotContainer()
27 {
28 vision = new VisionSubsystem();
29 }
30 }

33.2.3 Vision Command

The Vision Command is used to tell the VisionSubsystem code what to do and when to do it.

VisionCommand.java

Imports

1 package frc.robot.commands;
2

3 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
4 import edu.wpi.first.wpilibj2.command.CommandBase;
5 import frc.robot.RobotContainer;
6 import frc.robot.subsystems.VisionSubsystem;

• Line 1 adds VisionCommand to the correct package.

• Line 3 imports the SmartDashboard, used to display data and get a button input.

• Line 4 imports the CommandBase, used to make this class part of the command framework.

• Line 5 imports the RobotContainer so that instances of subsystems can be shared.

• Line 6 imports the VisionSubsystem which is needed so the command can operate.

Class

8 public class VisionCommand extends CommandBase

• Line 8 creates the class for VisionCommand and extends the CommandBase framework with it.

Objects, Instances, and Variables

10 private static final VisionSubsystem vision = RobotContainer.vision;
11

12 boolean getNewBarcode;

• Line 10 creates the VisionSubsystem object and assigns the instance of VisionSubsystem from the one created
in RobotContainer.

• Line 12 is a simple boolean flag used to see if the user wants to get a new barcode reading.

278 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

Constructor

Note: After adding this step, there will be an error shown. Ignore this error as it will be fixed in RobotContainer part
2.

14 public VisionCommand ()
15 {
16 addRequirements(vision);
17 }

• Line 14 is the constructor for the VisionCommand class.

• Line 16 tells the CommandBase that VisionCommand requires a VisionSubsystem instance to run.

Initialize

If there is any code that needs to be initialized, it will go in here. But as that is not required, this is an empty method.

19 @Override
20 public void initialize(){}

Execute

The execute method is what is called every time the command is called. Meaning that the code to be run continuously
should be in here.

22 @Override
23 public void execute()
24 {
25 getNewBarcode = SmartDashboard.getBoolean("Get New Barcode", false);
26

27 if (getNewBarcode)
28 {
29 vision.readBarcode();
30 SmartDashboard.putBoolean("Get New Barcode", false);
31 }
32 }

• Line 23 is the execute method.

• Line 25 assigns the boolean value taken from Get New Barcode on the dashboard to getNewBarcode. The
second parameter in the getBoolean call is the default value if nothing can be found.

• Line 27 is a conditional statement that checks if getNewBarcode is true. (Button was pushed)

• Line 29 will call the readBarcode method from VisionSubsystem, which in turn will call the scripts on the
VMX.

• Line 30 sets the getNewBarcode button on the dashboard to false to prevent a continuous call to the scripts
when only one call is required.

33.2. VS Code 279

Studica Robotics, Release 1.0.0

End

The end method is called when the command is interrupted or is finished as there are no motors or anything safety-
related called by this command. The end method can remain blank.

34 @Override
35 public void end(boolean interrupted){}

isFinished

Is finished is a method that is used to create an end condition for the command. As this command should run all the
time and never end, a false statement will be returned.

37 @Override
38 public boolean isFinished()
39 {
40 return false;
41 }

Full VisionCommand Code

1 package frc.robot.commands;
2

3 import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
4 import edu.wpi.first.wpilibj2.command.CommandBase;
5 import frc.robot.RobotContainer;
6 import frc.robot.subsystems.VisionSubsystem;
7

8 public class VisionCommand extends CommandBase
9 {

10 private static final VisionSubsystem vision = RobotContainer.vision;
11

12 boolean getNewBarcode;
13

14 public VisionCommand ()
15 {
16 addRequirements(vision);
17 }
18

19 @Override
20 public void initialize(){}
21

22 @Override
23 public void execute()
24 {
25 getNewBarcode = SmartDashboard.getBoolean("Get New Barcode", false);
26

27 if (getNewBarcode)
28 {
29 vision.readBarcode();
30 SmartDashboard.putBoolean("Get New Barcode", false);
31 }
32 }
33

(continues on next page)

280 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

(continued from previous page)

34 @Override
35 public void end(boolean interrupted){}
36

37 @Override
38 public boolean isFinished()
39 {
40 return false;
41 }
42 }

33.2.4 Robot Container Part 2

In part 2, the error is going to be fixed. The error occurs as the VisionSubsystem and VisionCommand are linked in
the command. However, they are not linked on the subsystem level.

Imports

In the imports section, one more import will be added.

8 package frc.robot;
9

10 import frc.robot.subsystems.VisionSubsystem;
11 import frc.robot.commands.VisionCommand;

• Line 11 is the addition as VisionCommand needs to be imported.

Constructor

The last change is in the constructor, where the default command for the VisionSubsystem will be set.

27 public RobotContainer()
28 {
29 vision = new VisionSubsystem();
30

31 vision.setDefaultCommand(new VisionCommand());
32 }

• Line 31 assigns a default command for the VisionSubsystem and that default command is VisionCommand

Full Code Part 2

1 /*--*/
2 /* Copyright (c) 2018-2019 FIRST. All Rights Reserved. */
3 /* Open Source Software - may be modified and shared by FRC teams. The code */
4 /* must be accompanied by the FIRST BSD license file in the root directory of */
5 /* the project. */
6 /*--*/
7

8 package frc.robot;
9

10 import frc.robot.subsystems.VisionSubsystem;
(continues on next page)

33.2. VS Code 281

Studica Robotics, Release 1.0.0

(continued from previous page)

11 import frc.robot.commands.VisionCommand;
12

13 /**
14 * This class is where the bulk of the robot should be declared. Since Command-based

→˓is a
15 * "declarative" paradigm, very little robot logic should actually be handled in the

→˓{@link Robot}
16 * periodic methods (other than the scheduler calls). Instead, the structure of the

→˓robot
17 * (including subsystems, commands, and button mappings) should be declared here.
18 */
19 public class RobotContainer
20 {
21 // The robot's subsystems and commands are defined here...
22 public static VisionSubsystem vision;
23

24 /**
25 * The container for the robot. Contains subsystems, OI devices, and commands.
26 */
27 public RobotContainer()
28 {
29 vision = new VisionSubsystem();
30

31 vision.setDefaultCommand(new VisionCommand());
32 }
33 }

33.2.5 Robot

In Robot.java there will be errors as the autonomous code was removed from the RobotContainer.

It is as simple as just removing all the lines with red underlines. The full robot code with errors removed is shown
below.

Full Robot Code

1 /*--*/
2 /* Copyright (c) 2017-2019 FIRST. All Rights Reserved. */
3 /* Open Source Software - may be modified and shared by FRC teams. The code */
4 /* must be accompanied by the FIRST BSD license file in the root directory of */
5 /* the project. */
6 /*--*/
7

8 package frc.robot;
9

10 import edu.wpi.first.wpilibj.TimedRobot;
11 import edu.wpi.first.wpilibj2.command.CommandScheduler;
12

13 /**
14 * The VM is configured to automatically run this class, and to call the functions

→˓corresponding to
15 * each mode, as described in the TimedRobot documentation. If you change the name of

→˓this class or
16 * the package after creating this project, you must also update the build.gradle file

→˓in the (continues on next page)

282 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

(continued from previous page)

17 * project.
18 */
19 public class Robot extends TimedRobot {
20

21 private RobotContainer m_robotContainer;
22

23 /**
24 * This function is run when the robot is first started up and should be used for

→˓any
25 * initialization code.
26 */
27 @Override
28 public void robotInit() {
29 // Instantiate our RobotContainer. This will perform all our button bindings,

→˓ and put our
30 // autonomous chooser on the dashboard.
31 m_robotContainer = new RobotContainer();
32 }
33

34 /**
35 * This function is called every robot packet, no matter the mode. Use this for

→˓items like
36 * diagnostics that you want ran during disabled, autonomous, teleoperated and

→˓test.
37 *
38 * <p>This runs after the mode specific periodic functions, but before
39 * LiveWindow and SmartDashboard integrated updating.
40 */
41 @Override
42 public void robotPeriodic() {
43 // Runs the Scheduler. This is responsible for polling buttons, adding newly-

→˓scheduled
44 // commands, running already-scheduled commands, removing finished or

→˓interrupted commands,
45 // and running subsystem periodic() methods. This must be called from the

→˓robot's periodic
46 // block in order for anything in the Command-based framework to work.
47 CommandScheduler.getInstance().run();
48 }
49

50 /**
51 * This function is called once each time the robot enters Disabled mode.
52 */
53 @Override
54 public void disabledInit() {
55 }
56

57 @Override
58 public void disabledPeriodic() {
59 }
60

61 /**
62 * This autonomous runs the autonomous command selected by your {@link

→˓RobotContainer} class.
63 */
64 @Override
65 public void autonomousInit() {

(continues on next page)

33.2. VS Code 283

Studica Robotics, Release 1.0.0

(continued from previous page)

66

67 }
68

69 /**
70 * This function is called periodically during autonomous.
71 */
72 @Override
73 public void autonomousPeriodic() {
74 }
75

76 @Override
77 public void teleopInit() {
78

79 }
80

81 /**
82 * This function is called periodically during operator control.
83 */
84 @Override
85 public void teleopPeriodic() {
86 }
87

88 @Override
89 public void testInit() {
90 // Cancels all running commands at the start of test mode.
91 CommandScheduler.getInstance().cancelAll();
92 }
93

94 /**
95 * This function is called periodically during test mode.
96 */
97 @Override
98 public void testPeriodic() {
99 }

100 }

33.2.6 Deploying To The Robot

A few steps will be followed to deploy the code to the VMX / Robot.

Ensure Target is set to VMX

Important: The VMX must be connected to the internet for this step to work!

Using the WSR VMX extension, the command VMX WSR: Set the deploy target to VMX (from
RoboRIO) will be used.

This will ensure that the project is configured for the VMX and run a build to download and cache the correct files for
the VMX.

284 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

Connect to the VMX WiFi AP

Once the development computer is connected to the VMX via the VMX WiFi AP, the code can be deployed to the
VMX. To deploy the code us the extension WPILib and use the command WPILib: Deploy Robot Code.
The command will deploy the compiled code onto the VMX for the robot manager to run.

Team Number is not 1234

If the VMX team number is not 1234, the team number will have to be set correctly. To set the team number correctly,
use the WPILib extension and the command WPILib: Set Team Number. The command palette will ask for
a team number to be entered, and then save the team number hit Enter. It is a good idea to rebuild the project code
if the team number is changed. To rebuild the project code us the extension WPILib and the command WPILib:
Build Robot Code

33.3 Testing it out

Time to test it out.

33.3.1 Reading a Barcode

Once code is deployed to the robot and the vision scripts are set up correctly, it is possible to read a barcode or QR
Code. Using the Control Station Console the code can be enabled for the system to work.

Shuffleboard Setup

When connected to the VMX via WiFi AP and the Control Station Console is launched, and the correct IP
address is used. Shuffleboard will launch and connect to the network tables stream of data.

On launch, it should look similar to this.

There will be two widgets in the middle. A widget called Get New Barcode and a widget called Barcode
Data. The Get New Barcode widget will have a red value. The widget is currently an indicator showing a false
value. Barcode Data is also an indicator widget; however, it displays a string value of null.

On the left of the window, the Vision tables and properties created by the watchdogListener.py can be seen.

Changing Get New Barcode to a Button

Having Get New Barcode as an indicator won’t work here. To fix this in Shuffleboard, the widget can be config-
ured as a toggle button.

Right, click on the red part of the widget, select Show as... and chose Toggle Button.

This changes the Get New Barcode to a toggle button that can be pressed to get a new barcode.

33.3. Testing it out 285

Studica Robotics, Release 1.0.0

286 Chapter 33. Reading a Barcode

Studica Robotics, Release 1.0.0

Enable the Robot

The Get New Barcode button will do nothing until the robot is enabled. Using Control Station Console
ensure that it is in Teleoperated mode (press o on the keyboard). When in the correct mode and connected to the robot,
hit e on the keyboard to enable the robot.

Once enabled, the Shuffleboard will be able to be used.

Reading Barcodes

For this demo, there are two types of barcodes being used, a CODE 128 barcode with the text Another Barcode,
and a QR Code with the text QR Code Text.

Test 1

While connected to the VMX and the robot enabled. Hitting the Get New Barcode button returns the result.

The result is QR Code Text, and if looking at the left panel, the type is also shown to be QRCODE. This is the robot
successfully reading a QR Code.

33.3. Testing it out 287

Studica Robotics, Release 1.0.0

Test 2

The CODE 128 barcode was placed in front of the QR Code, and Get New Barcode was pressed again.

The result changed to show the data as Another Barcode and on the left panel, the type is CODE128.

This demonstrates an easy way to read a barcode or QR code. This also demonstrates the framework for creating
vision applications with the VMX. The VMX runs the OpenCV, TensorFlow, or custom scripts and relays the info
back to the robot code via network tables.

288 Chapter 33. Reading a Barcode

CHAPTER

THIRTYFOUR

SERVO MOTORS

The collection now has a Multi-Mode Smart Servo included. The new servo will replace the old servos and provide
more functionality than before. The multi-mode servo allows for continuous and standard operation of the servo motor.
In continuous mode, the servo will spin proportionally based on input in the CW or CCW direction. The max speed
the servo will spin is 50rpm. In standard mode, the servo will act as a regular servo and have a range of motion of
300°. That is 150° CW and 150° CCW.

289

Studica Robotics, Release 1.0.0

34.1 Servo Specs

Table 1: Mechanical Specs
Function Range
Size 40mm x 20.1mm x 38.3mm x 54mm
Weight 64g
Gear Type Steel
Bearing Dual Ball Bearings
Spline 25T
Case Nylon & Fiberglass
Connector Wire 750mm ± 5mm (White, Red, Black)
Motor Metal Brush Motor
Water Resistance No

Table 2: Electrical Specs
Function 4.8V 6.0V
Idle Current 5mA 7mA
No Load Speed 0.25sec/60° 0.2sec/60°
Running Current 130mA 150mA
Stall Torque 180.85oz-in 300oz-in
Stall Current 1500mA 1800mA

Table 3: Control Specs
Function Spec
Command Signal Pulse Width Modulation
Amplifier Type Digital Comparator
Pulse Width Range 500S ~ 2500S
Neutral Position 1500S
Range of Motion 300° ± 5°
Dead band width 4S
Rotating Direction CW

Table 4: Enviromental Conditions
Function Range
Storage Temperature -30°C ~ 80°C
Operating Temperature -15°C ~ 70°C

Table 5: Standard Enviroment
Function Range
Temperature 25°C ± 5°C
Humidity 65% ± 10%

290 Chapter 34. Servo Motors

Studica Robotics, Release 1.0.0

34.2 Programming

34.2.1 Standard Servo

Java

1 //import the Servo Library
2 import com.studica.frc.Servo;
3

4 //Create the Servo Object
5 private Servo servo;
6

7 //Constuct a new instance
8 servo = new Servo(port);
9

10 //Can then use this mutator to set the servo angle
11 servo.setAngle(degrees); //Range 0° - 300°

The mutator method will allow you to set the angle of the servo

C++

1 //Include the Servo Library
2 #include "studica/Servo.h"
3

4 //Constructor
5 studica::Servo servo{port};
6

7 //Use this function to set the servo angle
8 servo.SetAngle(degrees); //Range 0° - 300°

The function will allow you to set the angle of the servo

Roscpp

1 //Include the Servo Library
2 #include "Servo_ros.h"
3

4

5 double servo_angle;
6

7 // Returns the angle value set by the Servo motor
8 void servo_angle_callback(const std_msgs::Float32::ConstPtr& msg)
9 {

10 servo_angle = msg->data;
11 }
12

13 int main(int argc, char **argv)
14 {
15 system("/usr/local/frc/bin/frcKillRobot.sh"); //Terminal call to kill the robot

→˓manager used for WPILib before running the executable.
16 ros::init(argc, argv, "servo_node");
17

18 /**
19 * Constructor
20 * Servo's ros threads (publishers and services) will run asynchronously in the

→˓background

(continues on next page)

34.2. Programming 291

Studica Robotics, Release 1.0.0

(continued from previous page)

21 */
22

23 ros::NodeHandle nh; //internal reference to the ROS node that the program will use
→˓to interact with the ROS system

24 VMXPi vmx(true, (uint8_t)50); //realtime bool and the update rate to use for the
→˓VMXPi AHRS/IMU interface, default is 50hz within a valid range of 4-200Hz

25

26 ros::ServiceClient setAngle;
27 ros::Subscriber servo_angle_sub;
28

29 ServoROS servo(&nh, &vmx, channel);
30

31 // Use these to directly access data
32 servo.GetAngle(); //returns a double;
33 servo.GetMinAngle(); //returns a double
34 servo.GetMaxAngle(); //returns a double
35

36 // Using the set_angle service, channel index is declared in the constructor
37 setAngle = nh.serviceClient<vmxpi_ros::Float>("channel/channel_index/servo/set_

→˓angle");
38

39 // Declaring message type
40 vmxpi_ros::Float msg;
41

42 // Setting the servo angle
43 float angle = 45.0; //Range -150° - 150°
44 msg.request.data = angle;
45 setAngle.call(msg);
46

47 // Subscribing to Servo angle topic to access the angle data
48 servo_angle_sub = nh.subscribe("channel/channel_index/servo/angle", 1, servo_angle_

→˓callback); //channel_index is the input channel set in the constructor
49

50 ros::spin(); //ros::spin() will enter a loop, pumping callbacks to obtain the
→˓latest sensor data

51

52 return 0;
53 }

Important: Subscribe to Servo topics to access the data being published and write callbacks to pass messages
between various processes.

Note: Calling the frcKillRobot.sh script is necessary since the VMXPi HAL uses the pigpio library, which
unfortunately can only be used in one process. Thus, everything that interfaces with the VMXPi must be run on the
same executable. For more information on programming with ROS, refer to: ROS Tutorials.

292 Chapter 34. Servo Motors

http://wiki.ros.org/ROS/Tutorials

Studica Robotics, Release 1.0.0

34.2.2 Continuous Servo

Java

1 //import the Servo Continuous Library
2 import com.studica.frc.ServoContinous;
3

4 //Create the Servo Continuous Object
5 private ServoContinous servo;
6

7 //Constuct a new instance
8 servo = new ServoContinuous(port);
9

10 //Can then use this mutator to set the servo speed
11 servo.set(speed); //Range -1 - 1 (0 Stop)

The mutator method will allow you to set the speed of the servo

C++

1 //Include the Servo Library
2 #include "studica/ServoContinuous.h"
3

4 //Constructor
5 studica::ServoContinuous servo{port};
6

7 //Use this function to set the servo angle
8 servo.Set(speed); //Range -1 - 1 (0 Stop)

The function will allow you to set the speed of the servo

34.2. Programming 293

Studica Robotics, Release 1.0.0

294 Chapter 34. Servo Motors

CHAPTER

THIRTYFIVE

MAVERICK DC MOTOR

The Maverick DC Motor is an upgraded 12VDC motor that allows for more torque than the previous motors used in
the worldskills collections.

295

Studica Robotics, Release 1.0.0

35.1 Motor Specs

Table 1: Motor Specs
Function Min Nom Max
Input Voltage — 12VDC —
Gear Ratio — 1:61 —
No Load RPM 88 100 112
No Load Current — 600mA —
Rated Speed 68 80 92
Rated Current — — 2.2A
Rated Torque — 139oz-in —
Stall Current — — 11A
Stall Torque 708oz-in — —
Direction — CW —
Encoder Voltage 4 — 5
Encoder Current — 6mA —
Encoder CPR — 6 —

Note: With a CPR of 6 and a gear ratio of 1:61 the encoder counts per revolution on the output shaft will be
6 * 61 * 4 = 1464(35.1)

296 Chapter 35. Maverick DC Motor

CHAPTER

THIRTYSIX

SERVO POWER BLOCK

The Servo Power Block allows for the proper power to be supplied to the servo motors on a robot.

36.1 Power Block Specs

Table 1: Power Block Specs
Function Min Nom Max
Input Voltage — 12VDC —
Output Voltage 5.5VDC 6.0VDC 6.5VDC
Output Current (shared) — — 10A

Note: The internal regulator has overcurrent protection and will shutoff at 10A output. Test’s have shown that it will

297

Studica Robotics, Release 1.0.0

shutoff just before 10A.

298 Chapter 36. Servo Power Block

CHAPTER

THIRTYSEVEN

SERVO SMART PROGRAMMER

The Servo Smart Programmer allows for the configuration and programming of the Studica Multi-Mode Smart Servo.

299

Studica Robotics, Release 1.0.0

37.1 Using the Smart Servo Programmer

37.1.1 Standard Mode

Setting the Servo to Standard Mode

• Connect the battery and servo to the programmer

• Set the selection switch to S on the top left of the programmer

• On the battery pack turn on the power

• Press the P button for 5 seconds (All LEDs will flash when ready to let go)

Testing Standard Mode

• Connect the battery and servo to the programmer

• Set the selection switch to S on the top left of the programmer

• On the battery pack turn on the power

• Press the S button to set the servo to sweep mode

• The Servo will now turn from -150° to 150°

• Press the S button for a second time to enter manual mode

• Pressing the L button will move the servo to -150°

• Pressing the P button will move the servo to 0°

• Pressing the R button will move the servo to 150°

• Pressing the S button will turn the programmer off

Important: Remember to turn off the battery pack by sliding the power switch to off

37.1.2 Continuous Mode

Setting the Servo to Continuous Mode

• Connect the battery and servo to the programmer

• Set the selection switch to C on the top left of the programmer

• On the battery pack turn on the power

• Press the P button for 5 seconds (All LEDs will flash when ready to let go)

Testing Continuous Mode

• Connect the battery and servo to the programmer

• Set the selection switch to C on the top left of the programmer

• On the battery pack turn on the power

• Press the S button to set the servo to sweep mode

• The Servo will now constantly turn between 360° CW and 360° CCW

• Press the S button for a second time to enter manual mode

300 Chapter 37. Servo Smart Programmer

Studica Robotics, Release 1.0.0

• Pressing the L button will move the servo in CW direction at 50rpm

• Pressing the P button will stop the servo

• Pressing the R button will move the servo in CCW direction at 50rpm

• Pressing the S button will turn the programmer off

Important: Remember to turn off the battery pack by sliding the power switch to off

37.1. Using the Smart Servo Programmer 301

Studica Robotics, Release 1.0.0

302 Chapter 37. Servo Smart Programmer

CHAPTER

THIRTYEIGHT

UNIT 1: INTRODUCTION TO PROGRAMMING

What is computer programming? Why do we do it? How does programming apply to robots?

38.1 Lesson 1: Introduction

Objectives

38.1.1 Introduction

This curriculum was created for a better understanding of programming for those that do not get or would like to under-
stand programming. This curriculum will teach basic to advanced principles in Java. Java is a high-level programing
language that is perfect for beginners. Java contains many of the basic and advanced principles in all languages, thus
making Java the first starting step for many. The general saying is that once you learn one language, the others become
easier to adapt. Any programmer will tell you that to be successful, you have to continually learn new languages and
adapt to changes in a language you already know. Knowing many languages allows you to use the correct language
in the right situation. Some languages operate better in specific conditions and on specific operating systems and
machines. What makes Java good is that it is platform-independent. Thus meaning the same code can mostly be run
on any device. This will be explained in the subsequent sections.

Note: Some content in this curriculum will be very bland. This information must still be absorbed for better under-
standing.

38.1.2 What is a Machine?

A machine, sometimes known as a computer is a device that has hardware and software. The hardware layer consists
of physical nature. This is what can be seen by the human eye and felt. Software is the invisible layer that instructs
the hardware on what to do. Knowing how hardware works, is not required; however, it will, in turn, make any code
written more efficient and better. In this chapter, we will discuss how the hardware and software layers interact.

303

Studica Robotics, Release 1.0.0

Components of a Machine

A machine has six core components:

• Central Processing Unit CPU

• Memory RAM

• Storage Data

• Input Devices keyboard and mouse

• Output Devices speakers and monitors

• Communication ethernet and WiFi

Central Processing Unit

The central processing unit CPU is the brain of the whole operation. The CPU gets instructions from memory and
acts on those instructions. When a CPU acts on instruction from memory, it is called executing. There are two
primary components of a CPU, the control unit CU and the arithmetic logic unit ALU. The control unit will instruct
the components on what and when to do something. The arithmetic unit will perform any mathematical or logical
operation. Below is a breakdown of the underlying architecture of a CPU.

A CPU is very advanced and has two main aspects of rating, speed, and amount of cores. The speed of a CPU is
measured in hertz Hz. 1 Hz is equal to 1 cycle per second. Some of today’s high-end CPUs can hit 5 GHz, which
is 5,000,000,000 cycles per second. The Z3, which was the first programmable digital computer, only had a speed
of 4 - 5 Hz. The CPU’s of today have multiple cores to increase the processing power. The picture above shows
a single-core CPU as there is only one ALU and CU. Today’s CPUs have 2,4,6,8,16,32+ cores. Shown below is a
multicore processor with basic architecture.

304 Chapter 38. Unit 1: Introduction to Programming

https://en.wikipedia.org/wiki/Z3_(computer)

Studica Robotics, Release 1.0.0

Memory

Memory is information stored for immediate use by a CPU. Before a program can be executed by the CPU, it must be
moved to memory. Memory generally has two components, an address, and data. The data in memory is only one byte
long and always has a unique address. Because memory bytes can be accessed in any order, memory is commonly
referred to as random-access memory RAM. Below is a simple diagram showing the two components of RAM and how
it interacts with the CPU.

Storage

Memory is a volatile type of data storage. This means that when the machine is powered off, all data stored in
memory will be erased. To overcome this, machines use storage devices. Storage devices allow for data to be stored
permanently. Some common types of storage are hard drives HD, solid-state drives SSD, and universal serial bus flash
drives USB. Each type of drive has its own pros and cons. HD’s allow for a large amount of storage; however, they
are slow compared to the other types. This is because HD’s are mostly mechanical and have moving parts. An SSD is
extremely quick and has no moving parts; however, SSD’s are more expensive and have less storage than HD’s. USBs
have a small amount of storage but are cheap and offer portability.

38.1. Lesson 1: Introduction 305

Studica Robotics, Release 1.0.0

Input Devices

Input devices allow the user to communicate with the machine. The two most common input devices are the keyboard
and the mouse. The keyboard allows the user to type in data on to the machine. Keyboards bind a keypress to a
particular language to understand what is being sent by the user. On most English keyboards, they use ASCII codes
to interoperate what was pressed by the user. The mouse is simply a pointer that allows the user to click on-screen
objects and perform actions.

Output Devices

Output devices allow the machine to communicate with the user. Some conventional output devices are monitors and
speakers. Monitors provide a graphical interface for the user. Although its good to note that not all monitors are
graphical, some are simple text-based interfaces. Speakers allow the machine to output sound to the user. This is
particularly useful if there is an error somewhere or simply acknowledge an action taken by the user.

Communication

There are multiple forms and layers of communication completed by a machine. A mouse uses different ways of
communication, depending on the mouse. A wired mouse will use a USB port and communicate using serial com-
munication. A wireless mouse will use a technology known as Bluetooth. Bluetooth allows for short-range wireless
communication. Some other common forms are ethernet and WiFi. Ethernet and WiFi are mostly the same and follow
the same OSI layer protocols. The main difference is that ethernet is a wired communication, whereas WiFi is wireless
communication. Ethernet will provide a more stable and, most of the time, a faster connection than WiFi. This is
because there can be other radio waves or outside noise impacting the strength of WiFi.

38.1.3 The Programming Language

A machine does not understand any human languages. Therefore programs are written in languages the machine can
interoperate and use. Before a machine can use instructions outlined in a program, that program is required to be
translated into a language, the machine CPU can execute.

There are three main programming language levels:

1. Machine Language

2. Assembly Language

3. High-Level Language

Machine Language

Machine language is the most primitive instructions used by a machine. It is sometimes referred to as the native
language. Machine language can be complicated to understand as it is only represented in binary code. It is possible
to edit and make programs in raw binary code; however, it is not ideal and can lead down a rabbit hole very fast if
something is wrong.

306 Chapter 38. Unit 1: Introduction to Programming

http://www.asciitable.com/
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Radio_noise

Studica Robotics, Release 1.0.0

Assembly Language

Due to the nature of machine language being very hard to write and read in, assembly was created. Assembly uses a
short word known as mnemonic to represent each of the machine language instructions. For example add (addition),
sub (subtraction), and mov (move). Assembly makes programming the machine easier; however, the machine can
not read assembly language. To convert assembly to machine language, a program called an assembler was created.
This will take the mnemonic instructions and convert them into the binary code used by the CPU.

High-Level Language

Assembly is almost still one for one the same as machine language just wrapped to be more readable. This makes
assembly still very difficult to program in and requires excellent knowledge of the CPU architecture. This is why
high-level languages were created. High-Level languages are close to English, which allows for better readability and
use. As stated in the introduction, there are many languages, and each one serves a specific purpose and is better suited
based on the application. Some of the most popular high-level languages in order of popularity on GitHub (The worlds
leading software platform) in 2019.

• JavaScript - Used in web development

• Python - Scripting language useful for short programs

• Java - Object-orientated language widely used for platform independent applications

• PHP - Scripting language for web development

• C# - Object-orientated language developed by Microsoft and used for desktop applications

• C++ - Object-orientated language based on C

• TypeScript - Superset of JavaScript, allows for static typing

• Shell - Scripting language used for running tasks on a command-line interpreter

• C - Very close to assembly but has the ease of a high-level language

• Ruby - Similar to Python but is mostly used for web applications

The data for the above list can be viewed in the GitHub year of review report found here.

Programs written in high-level languages are called source code. A machine cannot natively run source code. Source
code must be translated into binary code for the CPU to execute the source code. A program called a compiler is used
to compile the source code into usable binary code for the CPU.

38.1.4 End of Lesson Exercises

Answer the following questions on a piece of paper to fully understand the lesson content. Some questions might
require you to research further.

1. What is a CPU and what unit is the speed measured in?

2. List the six components of a machine and provide an explanation of each.

3. What unit is memory measured in?

4. How many cores does the CPU on your computer have?

5. There are eight bits to a byte, how many bits are in 8 MB (megabytes)?

6. Why is memory referred to as RAM?

7. What is the major difference between memory and storage?

38.1. Lesson 1: Introduction 307

https://octoverse.github.com/

Studica Robotics, Release 1.0.0

8. What are some other input and output devices that machines can have?

9. What is the language used by the CPU to execute instructions?

10. Why was the assembly and the assembler created?

11. List 10 other high-level languages and give an explanation of each.

12. What is the compiler for C++ called?

13. GitHub calls their year end report “The State of the ______”.

38.2 Lesson 2: A Simple Java Program

38.2.1 The Java Language

Java was developed by Sun Microsystems in 1991. The team at Sun Microsystems was led by James Gosling. Gosling,
who is often referred to as “Dr. Java,” is a Canadian computer scientist who is best known for being the founder of
Java. Java was initially called Oak and only became Java in 1995 with its first public implementation. In 2010 Sun
Microsystems was bought by Oracle. The main draw to Java was the “Write once, run anywhere” promise. Java
is a fully-featured programming language that is used to develop applications in many environments such as web
applications, mobile phones, robotics, desktop software, and servers. Java currently runs on billions of different
devices worldwide, and some devices are not even on this planet anymore. Most of us use Java every day without even
knowing it. If you have an Android phone, you are using Java. Software for Android devices is developed using Java.

Java can be broken up into 5 major sections:

1. Java Language Specification

2. Java API

3. Java JDK

4. Java JRE

5. Java JVM

Java Language Specification

The Java Language Specification is a technical definition of the Java programming language. This includes the syntax
and semantics. The constantly updated and current specification can be found on Oracles website here.

Java API

The Java API (application program interface) is the library that contains all the predefined classes and interfaces
required for creating a Java program. The Java API is grows every release of a new Java version. The most to date and
current version can be found on Orcales website here.

308 Chapter 38. Unit 1: Introduction to Programming

https://docs.oracle.com/javase/specs/
https://docs.oracle.com/en/java/javase/14/docs/api/index.html

Studica Robotics, Release 1.0.0

Java JDK

The Java JDK (Java Development Toolkit) contains all the tools needed for Java development. This would include
the JRE, an interpreter, a compiler, an archiver, and other tools such as the document generator. The JDK can be
downloaded from Oracles website here.

Java JRE

The Java JRE (Java Runtime Environment) takes the Java code and starts the JVM. The JRE is essentially the minimal
requirements for deploying a Java program.

Java JVM

The Java JVM (Java Virtual Machine) reads the Java program bytecode and executes it. For any device to run Java a
JVM is required on that device. The main benefit of the JVM is that it allows any Java code to be deployed.

38.2.2 Simple Java Program

The code used for any beginner in a new language is “Hello World!”. Lets look below at this simple program.

HelloWorld.java

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

When executed we will get the output below in the console window.

Hello World!

Lets break down this simple program line by line.

Line 1: is the class identifier. Every Java program requires at least one class to be defined. Conventionally every class
must start with an uppercase letter. The class name used in the example is HelloWorld. Notice how it is one word
and not multiple words. If we used Hello World a syntax error would pop up.

Note: The class name HelloWorld is the same as the file name HelloWorld.java. Java is case sensitive and
these must be the same to avoid a compilation errors.

Line 2: This is the opening brace {. Braces group the components of a program. To close the group a closing brace }
like on line 8 is required.

Line 3: is the main definition. The main method is required for a Java program to execute. There may be multiple
methods in a class but the main is the entry point during execution.

Line 4: This is the opening brace { for the main method.

38.2. Lesson 2: A Simple Java Program 309

https://www.oracle.com/ca-en/java/technologies/javase-downloads.html

Studica Robotics, Release 1.0.0

Line 5: This is a comment. Comments are little notes left by a programmer that do not get compiled. Comments will
be covered more in depth in a later chapter.

Line 6: Contains the print statement. System.out.println is a statement in Java. This particular statement will
display the contents inside the () parentheses. On line 6 inside the () parentheses we have the String “Hello World!”.
A String is a term for a sequence of characters. A String is always enclosed in " " quotations. On this line any line
of text placed inside the ” ” will be output to the console.

Important: Notice at the end of line 6 there is a ; Semicolon. In Java Semicolons are required to end a statement. In
the case of line 6 we have the statement System.out.println("Hello World!") then to end it there is the
;.

Line 7: Is the closing brace } for the main method.

Line 8: Is the closing brace } for the class.

Lets Create some more Simple Programs

HelloWorldVersionTwo.java

1 public class HelloWorldVersionTwo
2 {
3 public static void main(String[] args)
4 {
5 //Display messages on the console
6 System.out.println("Hello World!");
7 System.out.println("We added some more print statements");
8 System.out.println("Wohoo!");
9 }

10 }

Output

Hello World!
We added some more print statements
Wohoo!

LetsDoSomeMath.java

1 public class LetsDoSomeMath
2 {
3 public static void main(String[] args)
4 {
5 //Show how some expressions work
6 System.out.println("Let's do some math!");
7 System.out.print("10 + 2 - 5 = ");
8 System.out.println(10 + 2 - 5);
9 }

10 }

Output

310 Chapter 38. Unit 1: Introduction to Programming

Studica Robotics, Release 1.0.0

Let's do some math!
10 + 2 - 5 = 7

Let’s look at why there is only two lines in the console and what happened.

On line 7 notice how it’s System.out.print and not System.out.println. println will move the cursor
to the start of the next line after displaying it’s statement. print does not move to the next line after displaying the
statement.

On line 8 the math 10 + 2 - 5 = is inside quotations " " thus identifying it a String and not an expression.

On line 9 there is no quotations " " so the statement inside the parentheses 10 + 2 - 5 is now considered an
expression and will be evaluated. As the expression is in a print statement the result will be outputted to the console.

38.2.3 How a Simple Java Program is Executed

Let’s look back at a simple Java program.

HelloWorld.java

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

Output

Hello World!

What we will look at it in this chapter is how the source code in HelloWorld outputs to the console.

The general process is outlined in the graphic below.

The process starts by taking the HelloWorld.java source code file and sending it through the Java compiler. After
going through the compiler there is a new file create called HelloWorld.class this is the Java bytecode file that
the JVM will be able to interpret. After the .class file is created it will join the the JRE and call the JVM. The JVM
will then output to the console window displaying the text Hello World!.

Let’s look at this process in even more detail. The source code is shown at the top of this chapter.

The compiler is called by using

38.2. Lesson 2: A Simple Java Program 311

Studica Robotics, Release 1.0.0

javac HelloWorld.java

This will run and then create the HelloWorld.class file if there are no errors.

HelloWorld.class

1 Compiled from "HelloWorld.java"
2 public class HelloWorld {
3 public HelloWorld();
4 Code:
5 0: aload_0
6 1: invokespecial #1 // Method java/lang/Object."<init>":()V
7 4: return
8

9 public static void main(java.lang.String[]);
10 Code:
11 0: getstatic #2 // Field java/lang/System.out:Ljava/io/

→˓PrintStream;
12 3: ldc #3 // String Hello World!
13 5: invokevirtual #4 // Method java/io/PrintStream.

→˓println:(Ljava/lang/String;)V
14 8: return
15 }

The bytecode looks completely different than the source code. There are some similarities that can be spotted. The
HelloWorld.class can be executed by the JVM when ever required. Now that the bytecode is created when the JVM is
called it will create the console window output.

Output

Hello World!

Now we know how we get from the source code to the compiled output in the console window.

38.2.4 End of Lesson Exercises

Answer the following questions on a piece of paper to fully understand the lesson content. Some questions might
require you to research further.

1. Who owns Java now?

2. What is the programming language used by Android?

3. What version is the current Java language specification?

4. Explain the difference between JDK and JRE.

5. Is Java case sensitive?

6. Java contains keywords, can you list 20 of them?

7. What is a statement? How do you end a statement in Java?

8. What is the difference between print and println?

9. What is the filename extension for a Java source and bytecode?

10. What is the command to compile and run a Java program?

312 Chapter 38. Unit 1: Introduction to Programming

Studica Robotics, Release 1.0.0

11. Can the Java bytecode run on any device or machine?

12. Are there any limitations to the Java compiler?

38.3 Lesson 3: Practices and Errors

38.3.1 Good Practices

In Java, a whole program can be done on one line; however, this would make it incredibly hard to read, understand,
and maintain. To be readable, code is spread out over multiple lines, and a concept known as white space is used.
White space is the area between and around programming elements. Let’s look at the Hello World example.

The first example will have everything on one line.

1 public class HelloWorld{public static void main(String[] args){/*Display message
→˓Hello World! on the console*/System.out.println("Hello World!");}}

Notice how it’s hard to see what is going on. There is an inline comment which is ok, but there are better ways to
comment. In conclusion, it is tough to interpret.

In this example, proper white space and multiple lines are used to separate everything.

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

This code is now readable and it is easy to follow along.

Indentation Style

There are two popular styles of indentation in programming. K&R (Kernighan and Ritchie) and Allman (Eric Allman).

K&R Style

1 public class HelloWorld {
2 public static void main(String[] args) {
3 //Display message Hello World! on the console
4 System.out.println("Hello World!");
5 }
6 }

38.3. Lesson 3: Practices and Errors 313

Studica Robotics, Release 1.0.0

Allman Style

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

There are benefits and drawbacks to both methods. K&R allows for saving space but can get be very hard to debug.
Allman lines the braces {} up; this allows for easy debugging; however, it does add extra lines of code. The choice of
which one is better comes down to a personal decision. Programmers have long fought over which style is better, but
at the end of the day, there is only one rule, be consistent. Don’t switch between styles in a project, always maintain
the same style throughout the whole project. Mixing styles will cause your brain to use more overhead when trying to
debug an error and lead to much frustration.

Hint: Most of the documentation here will use Allman style as it allows for more comfortable reading on new
programmers.

Indentation

Code should always be indented after a brace {. Some examples are shown below.

Bad Indentation

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

This code has no indentation.

Good Indentation

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

This code has good indentation. Notice that after the { in the highlighted lines the next block is indented.

314 Chapter 38. Unit 1: Introduction to Programming

Studica Robotics, Release 1.0.0

Spacing

While not necessary, spacing allows for easier readability within code.

Bad Spacing

1 System.out.println(6*10%5/6.2+"Math is crazy!");

Good Spacing

1 System.out.println(6 * 10 % 5 / 6.2 + "Math is crazy!");

Both forms are acceptable; however, the second is a better practice and allows for easier debugging.

Commenting

Documentation is fundamental in programming. A good saying is to always comment as if someone else needed to
use your code and understand what is going on. There are three types of comments; line, block, and Javadoc. Adding
comments to your code will not change the functionality of the code. Comments are not compiled and included in the
Java bytecode.

Line

Line comments are the most common type of commenting. A line comment is achieved by using a // before any line
you want to comment or comment out. Some examples are shown below.

1 // This is a basic line comment
2

3 System.out.println("Hello World!"); // Line comments can be placed after code as well
4

5 // Anything after the // will be commented out and excluded this is useful for
→˓disabling lines of code

6

7 // System.out.println("Hello World!");

If we were to run the code above only the first print statement will be printed to the console. The second print statement
has been commented out and will be ignored by the compiler.

Block

Block comments are useful when multiple lines of comments are required. Block comments can also be used to
comment out a whole section of code. Block comments start with /* and to end the comment use *\. Some examples
are shown below.

1 /*
2 * This is a block comment
3 * <- Sometimes we add a * or the ide will auto add a * to show a new line in the

→˓comment block
4 */
5

6 int x = 10 /* Block comments can be used inline as well but not preferred */ + 20;
7

8 /* The code below is commented out

(continues on next page)

38.3. Lesson 3: Practices and Errors 315

Studica Robotics, Release 1.0.0

(continued from previous page)

9 public class HelloWorld
10 {
11 public static void main(String[] args)
12 {
13 //Display message Hello World! on the console
14 System.out.println("Hello World!");
15 }
16 }
17 */

Always remember to close the block comment with */ otherwise all the code after the starting /* will be commented
out.

Javadoc

Javadoc comments are a particular type of comment. When documentation is generated for a Java project, a Javadoc
comment will follow into the docs. Javadoc comments are generally used at the beginning of the program in the title
block and at the beginning of every class and method. A Javadoc comment is similar to a block comment with one
change. To start a Javadoc comment, use /** notice the double *. To end a Javadoc use */. Some examples are
shown below.

1 /**
2 * This is an example of a Javadoc comment
3 */
4

5 /**
6 * Javadoc comments have some special features called tags
7 * Here are some examples of tags
8 * @param variable variable description
9 * @return whatever the return statement is

10 * @author authors name
11 */

Javadoc comments are very useful and powerful. For a full list of tags and how they are used consult the Javadoc tag
conventions here.

38.3.2 Errors

There are three types of errors in programming; Syntax, Logic and Runtime.

Syntax Errors

Any error that is detected by the compiler is called a Syntax error. Syntax errors are due to issues in how the code is
constructed. Some common syntax errors are misspelled words, forgetting braces {} and or semi-colons ;.

Some examples are below.

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console

(continues on next page)

316 Chapter 38. Unit 1: Introduction to Programming

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#tag

Studica Robotics, Release 1.0.0

(continued from previous page)

6 System.out.println("Hello World!);
7 }
8 }

This example will give 3 errors on compilation.

On line 6 it will give an unclosed string literal and a ';' expected error. On line 8 it will give a
reached end of file while parsing } error.

The only actual error is the first one on line 6: unclosed string literal. The other errors are the chain effect
of the first error. To fix this error have a look at line 6.

6 System.out.println("Hello World!);``

The error is that a string was started but never completed. Remember a string requires an opening " and closing "
quotation. To fix this line a end " quotation is needed. The " is inserted between the ! and the).

6 System.out.println("Hello World!");

Logic Errors

Logic errors are when a program is supposed to do one thing but does another. Logic errors are very common and
sometimes can lead to long debugging sessions. One of the most common logic errors is comparisons. An example is
shown below.

1 public class LogicError
2 {
3 public static void main(String[] args)
4 {
5 boolean x = false;
6

7 if (x = false)
8 {
9 System.out.println("X is False!");

10 }
11 else
12 {
13 System.out.println("X is True!");
14 }
15 }
16 }

Output

X is True!

The code compiles but the output is wrong. The correct output should have been X is False!. The logic error is
on line 7. Comparisons and if statements will be covered in later chapters. But for now a logical error is being shown.

On line 7 we have:

7 if (x = false)

Comparisons require a == not =.

By changing line 7 to this:

38.3. Lesson 3: Practices and Errors 317

Studica Robotics, Release 1.0.0

7 if (x == false)

We get the successful output:

X is False!

Runtime Errors

Runtime errors happen while the Java code is running. Some common runtime errors are input errors, logical errors
that cause the program to crash and infinite loops.

A simple runtime error to show is a division by zero. This is shown below.

1 public class RuntimeError
2 {
3 public static void main(String[] args)
4 {
5 System.out.println(1 / 0);
6 }
7 }

The output console will display this error:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at RuntimeError.main(RuntimeError.java:5)

38.3.3 End of Lesson Exercises

Answer the following questions on a piece of paper to fully understand the lesson content. Some questions might
require you to research further.

1. Convert this code on one line to the proper format of multiple lines.

1 public class OneLiner{public static void main(String[] args){System.out.println(
→˓"This is a one liner!");}}

2. Convert this K&R indentation to Allman indentation.

1 public class Indentation {
2 public static void main(String[] args) {
3 System.out.println("Some");
4 System.out.println("Random");
5 System.out.println("Text");
6 }
7 }

3. Find the names for 5 other indentation styles.

4. Space out the expressions here properly.

1 System.out.println(10+10+2*4/6%50*22-100);

5. Comment out line 5 and 7 of the code below.

318 Chapter 38. Unit 1: Introduction to Programming

Studica Robotics, Release 1.0.0

1 public class Indentation
2 {
3 public static void main(String[] args)
4 {
5 System.out.println("Thats");
6 System.out.println("Random");
7 System.out.println("Stuff");
8 System.out.println(":)");
9 }

10 }

6. Find and give a description of 8 tags from Javadoc comments.

7. Describe all three types of errors.

8. Find more examples of errors online and how the errors were fixed.

38.3. Lesson 3: Practices and Errors 319

Studica Robotics, Release 1.0.0

320 Chapter 38. Unit 1: Introduction to Programming

CHAPTER

THIRTYNINE

UNIT 2: STARTING JAVA

39.1 Lesson 1: Installing Java

39.1.1 Downloading the JDK

The Java JDK is required for most development in Java.

Installing the JDK

The latest JDK can be found on the Oracle website here. Select the correct install for your OS.

Note: An Oracle account will be required to download JDK 11. This is due to the recent release of JDK 14. The
IDE we use in the curriculum does support the new JDK; however, the workaround is something we won’t be covering
in this curriculum.

Run the JDK installation file, this will require Admin privileges.

The installation wizard will open. Follow the prompts and install the JDK. When complete you should see a window
like the one below.

321

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html

Studica Robotics, Release 1.0.0

Adding Java to PATH

Sometimes the JAVA_HOME is not set correctly after installing the JDK. To verify if you have the JAVA_HOME set
correctly open the command prompt and type in the following command.

java

If it is not set correctly you will see the following error:

'java' is not recognized as an internal or external command,
operable program or batch file.

To fix this we need to add JAVA_HOME to the PATH in environment variables. To get to environment variables hit
the WIN + R key to open run. In run type "SystemPropertiesAdvanced" and hit enter. This will open the
Advanced tab in System Properties.

Select Environment Variables.

In the first section User variables, Find the variable Path and select it and hit Edit....

Hit New and enter the following C:\Program Files\Java\jdk-11.0.7\bin.

Important: If you installed the JDK in a different location use that path instead.

Repeat the same process above for the System variables.

To verify that the Path is set correctly open the command prompt again and enter the command java. There should
be a response as shown below.

C:\Windows\system32>java
Usage: java [options] <mainclass> [args...]

(to execute a class)
or java [options] -jar <jarfile> [args...]

(to execute a jar file)
or java [options] -m <module>[/<mainclass>] [args...]

(continues on next page)

322 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

(continued from previous page)

java [options] --module <module>[/<mainclass>] [args...]
(to execute the main class in a module)

or java [options] <sourcefile> [args]
(to execute a single source-file program)

Arguments following the main class, source file, -jar <jarfile>,
-m or --module <module>/<mainclass> are passed as the arguments to
main class.

where options include:

-cp <class search path of directories and zip/jar files>
-classpath <class search path of directories and zip/jar files>
--class-path <class search path of directories and zip/jar files>

A ; separated list of directories, JAR archives,
and ZIP archives to search for class files.

-p <module path>
--module-path <module path>...

A ; separated list of directories, each directory
is a directory of modules.

--upgrade-module-path <module path>...
A ; separated list of directories, each directory
is a directory of modules that replace upgradeable
modules in the runtime image

--add-modules <module name>[,<module name>...]
root modules to resolve in addition to the initial module.
<module name> can also be ALL-DEFAULT, ALL-SYSTEM,
ALL-MODULE-PATH.

--list-modules
list observable modules and exit

(continues on next page)

39.1. Lesson 1: Installing Java 323

Studica Robotics, Release 1.0.0

324 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

(continued from previous page)

-d <module name>
--describe-module <module name>

describe a module and exit
--dry-run create VM and load main class but do not execute main method.

The --dry-run option may be useful for validating the
command-line options such as the module system configuration.

--validate-modules
validate all modules and exit
The --validate-modules option may be useful for finding
conflicts and other errors with modules on the module path.

-D<name>=<value>
set a system property

-verbose:[class|module|gc|jni]
enable verbose output for the given subsystem

-version print product version to the error stream and exit
--version print product version to the output stream and exit
-showversion print product version to the error stream and continue
--show-version

print product version to the output stream and continue
--show-module-resolution

show module resolution output during startup
-? -h -help

print this help message to the error stream
--help print this help message to the output stream
-X print help on extra options to the error stream
--help-extra print help on extra options to the output stream

(continues on next page)

39.1. Lesson 1: Installing Java 325

Studica Robotics, Release 1.0.0

(continued from previous page)

-ea[:<packagename>...|:<classname>]
-enableassertions[:<packagename>...|:<classname>]

enable assertions with specified granularity
-da[:<packagename>...|:<classname>]
-disableassertions[:<packagename>...|:<classname>]

disable assertions with specified granularity
-esa | -enablesystemassertions

enable system assertions
-dsa | -disablesystemassertions

disable system assertions
-agentlib:<libname>[=<options>]

load native agent library <libname>, e.g. -agentlib:jdwp
see also -agentlib:jdwp=help

-agentpath:<pathname>[=<options>]
load native agent library by full pathname

-javaagent:<jarpath>[=<options>]
load Java programming language agent, see java.lang.instrument

-splash:<imagepath>
show splash screen with specified image
HiDPI scaled images are automatically supported and used
if available. The unscaled image filename, e.g. image.ext,
should always be passed as the argument to the -splash option.
The most appropriate scaled image provided will be picked up
automatically.
See the SplashScreen API documentation for more information

@argument files
one or more argument files containing options

-disable-@files
prevent further argument file expansion

--enable-preview
allow classes to depend on preview features of this release

To specify an argument for a long option, you can use --<name>=<value> or
--<name> <value>.

39.1.2 Writing your first Java Program

With the JDK installed we can now create our first Java program.

Creating the Simple Java Program

Open notepad and enter in the Simple Java Program. If you have forgotten the code is listed below.

1 public class HelloWorld
2 {
3 public static void main(String[] args)
4 {
5 //Display message Hello World! on the console
6 System.out.println("Hello World!");
7 }
8 }

Important: Remember to save the file as HelloWorld.java.

326 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

Compiling the Simple Java Program

To compile HelloWorld.java open command prompt as Administrator.

Navigate to the location of HelloWorld.java. An example is shown below.

Once navigated to the correct folder you can verify HelloWorld.java is there by using the command dir.

Once HelloWorld.java is verified to be in the folder run the following command.

javac HelloWorld.java

39.1. Lesson 1: Installing Java 327

Studica Robotics, Release 1.0.0

Running the Simple Java Program

While still in the location of the HelloWorld.java in the command prompt run the command:

java HelloWorld

Tip: If you would like view the Java bytecode you can run the command javap -c HelloWorld.class.

39.1.3 Installing an IDE

Writing programs in notepad and compiling them works and is ok for small programs. But for creating and managing
large projects a piece of software called and Integrated Development Environment IDE is required. The IDE used for
this curriculum is NetBeans.

Download NetBeans 11.3 here.

Launch the installer and go through the prompts.

Once installed open NetBeans and this prompt will come up.

Hit next and go through the plugin installer. It is recommended to install all the default plugins listed. When complete
the IDE window should look like this.

328 Chapter 39. Unit 2: Starting Java

https://netbeans.apache.org/download/nb113/nb113.html

Studica Robotics, Release 1.0.0

39.2 Lesson 2: Writing Some Programs

39.2.1 Using the IDE

Now that the IDE is installed we can start writing some Java code without needing the command prompt.

Creating a Project

The first step is to create a Java project. Open NetBeans and select New Project. This can be done by going to
File>New Project, using the shortcut Ctrl + Shift + N or by clicking on the icon as shown.

This will open up the project creation window.

We are going to use Java with Maven and select Java Application for projects.

Hint: Maven is a project automation tool used for building Java projects. You can find out more here

For Project Name use FirstProject and for Group Id: use com.edu.

This will create the project. In the project window on the left you will see a project displayed called FirstProject.
This is the project we just created.

39.2. Lesson 2: Writing Some Programs 329

https://maven.apache.org/

Studica Robotics, Release 1.0.0

330 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

39.2. Lesson 2: Writing Some Programs 331

Studica Robotics, Release 1.0.0

332 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

Adding a Java file to the Project

To create a Java file right click on com.edu.firstproject and select New > Java Class.

This will open another window for creating the Java Class.

The Class Name should be HelloWorld. Hit Finish when ready and the Java file will be created and added to the
project.

The HelloWorld.java file will automatically open for editing. Let’s break down what each section of the default
template is.

1 /*
2 * To change this license header, choose License Headers in Project Properties.
3 * To change this template file, choose Tools | Templates
4 * and open the template in the editor.
5 */

This is the License header. License headers are normally required when you are going to release code or projects to
the public. For personal use they are not really required.

39.2. Lesson 2: Writing Some Programs 333

Studica Robotics, Release 1.0.0

6 package com.edu.firstproject;

Packages are a way of organizing Java classes into a namespace. This is mostly useful for when you create a library
and the library requires multiple classes.

8 /**
9 *

10 * @author james
11 */

This is the Javadoc comment for the HelloWorld Class. Notice how the author tag is automatically added for you. This
is useful for tracking who created what. Some projects can get very big and tracking down the author can be crucial.

12 public class HelloWorld {
13

14 }

This is the class definition. This is created by default to prevent errors with the class name not matching the filename.
Notice how the class is currently using the indentation style of K&R. We will change this to Allman by moving the
starting brace { to line 13. We should get this:

12 public class HelloWorld
13 {
14

15 }

334 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

Adding the Simple Java Program

Let’s add the simple Java program, compile it, then run it.

To add the simple Java program to the HelloWorld.java we can see that we are only missing one section. The contents
of of the HelloWorld class.

Add this to the contents of the HelloWorld class

1 public static void main(String[] args)
2 {
3 //Display message Hello World! on the console
4 System.out.println("Hello World!");
5 }

The HelloWorld.java should now fully look like this:

1 /*
2 * To change this license header, choose License Headers in Project Properties.
3 * To change this template file, choose Tools | Templates
4 * and open the template in the editor.
5 */
6 package com.edu.firstproject;
7

8 /**
9 *

10 * @author james
11 */
12 public class HelloWorld
13 {
14 public static void main(String[] args)
15 {
16 //Display message Hello World! on the console
17 System.out.println("Hello World!");
18 }
19 }

To compile the project we will hit the build icon or use F11.

You should notice a window popup on the bottom of the IDE. This is the output console.

Note: On first build maven might take a few seconds as it will downloading dependencies need for compilation.

To run the project and see some output we hit the green arrow by the build icon. Alternatively F6 can be used as well.

39.2. Lesson 2: Writing Some Programs 335

Studica Robotics, Release 1.0.0

A popup will come up asking you to select the main class.

Select com.edu.firstproject.HelloWorld and hit the Select Main Class button. The project will
then run and the output can be seen in the console window as displayed below.

39.2.2 Exercises

Below are a list of exercises to complete. Answers will be provided in the next section.

Important: To learn properly it is recommended to attempt the exercises before looking at the answers.

Hint: All programs except the challenge will only require System.out.println(); or System.out.
print();.

1. Write a program that will display the following in the output console:

336 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

Hello World!
It is very nice to meet you.
This is one of my first Java programs.

2. Write a program that will display the following in the output console:

RRRRR OOO BBBBB OOO TTTTT
R R O O B B O O T
RRRR O O BBBB O O T
R R O O B B O O T

RR R OOO BBBBB OOO T

3. Write a program that will create a table like this:

x x^2 x^3 x^4
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256
5 25 125 625

4. Write a program that will display the result of:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9

5. Write a program that will disapply the result of:

10.6 * 4.0− 3.2 * 1.0
20.6− 1.8

(39.1)

Write a program that converts 30°C to Fahrenheit

Hint: The formula is 9
5 * 𝐶 + 32(39.2)

Challenge Question

Note: Challenge questions are here to stump you and test your problem solving skills. The content in a challenge
question will be covered in later units.

7. Add onto question 6 by having the user input a value in Celsius to be converted.

Example the user inputted 30°C

Enter the temperature to convert in °C: 30
30°C is equal to 86°F

Note: A user might input a value such as 30.5

39.2. Lesson 2: Writing Some Programs 337

Studica Robotics, Release 1.0.0

39.2.3 Exercise Answers

Question 1:

1 public class QuestionOne
2 {
3 public static void main(String[] args)
4 {
5 //Display some messages on the console
6 System.out.println("Hello World!");
7 System.out.println("It is very nice to meet you.");
8 System.out.println("This is one of my first Java programs.");
9 }

10 }

Question 2:

1 public class QuestionTwo
2 {
3 public static void main(String[] args)
4 {
5 //Display message Robot on the console
6 System.out.println("RRRRR OOO BBBBB OOO TTTTT");
7 System.out.println(" R R O O B B O O T");
8 System.out.println(" RRRR O O BBBBB O O T");
9 System.out.println(" R R O O B B O O T");

10 System.out.println("RR R OOO BBBBB OOO T");
11 }
12 }

Question 3:

1 public class QuestionThree
2 {
3 public static void main(String[] args)
4 {
5 //Display a table on the console
6 System.out.println("x x^2 x^3 x^4");
7 System.out.println("1 1 1 1");
8 System.out.println("2 4 8 16");
9 System.out.println("3 9 27 81");

10 System.out.println("4 16 64 256");
11 System.out.println("5 25 125 625");
12 }
13 }

338 Chapter 39. Unit 2: Starting Java

Studica Robotics, Release 1.0.0

Question 4:

1 public class QuestionFour
2 {
3 public static void main(String[] args)
4 {
5 //Display some math on the console
6 System.out.print("1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = ");
7 System.out.println(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9);
8 }
9 }

Output

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45

Question 5:

1 public class QuestionFive
2 {
3 public static void main(String[] args)
4 {
5 //Display some math on the console
6 System.out.println((10.6 * 4.0 - 3.2 * 1.0) / (20.6 - 1.8));
7 }
8 }

Output

2.085106382978723

Question Six

1 public class QuestionSix
2 {
3 public static void main(String[] args)
4 {
5 //Display some math on the console
6 System.out.print((9.0 / 5.0) * 30 + 32);
7 System.out.println("°F");
8 }
9 }

Output

86°F

Important: If you got 62°F as your answer there is a logic error in your code. In Java 9
5 (39.3) would result in 1.

This is due to integer division. Integers do not allow decimal points. 9
5 (39.4) should be 1.8 but the result is 1 as .8 is

discarded. To eliminate integer division we add .0 to the integer as shown in the answer.

39.2. Lesson 2: Writing Some Programs 339

Studica Robotics, Release 1.0.0

Challenge Question

1 /*
2 * To change this license header, choose License Headers in Project Properties.
3 * To change this template file, choose Tools | Templates
4 * and open the template in the editor.
5 */
6 package com.edu.firstproject;
7

8 import java.util.Scanner;
9

10 /**
11 *
12 * @author james
13 */
14 public class ChallengeQuestion
15 {
16 public static void main(String[] args)
17 {
18 Scanner input = new Scanner(System.in);
19 System.out.print("Enter the temperature to convert in °C: ");
20 double temp = input.nextDouble();
21 System.out.println(temp + "°C is equal to " + ((9.0 / 5.0) * temp + 32) + "°F");
22 }
23 }

Example Output

Enter the temperature to covert in °C: 21.5
21.5°C is equal to 70.7°F

340 Chapter 39. Unit 2: Starting Java

CHAPTER

FORTY

UNIT 3: JAVA ESSENTIALS

40.1 Lesson 1: Data Types and Variables

40.1.1 Data Types

Most programing languages use data types to tell the compiler how the program is using data. Using the correct data
type is always important. Good programmers always try to optimize the code as much as possible. The easiest way to
optimize code is to use the correct data type. Data types are in many shapes and sizes. Java has eight primitive data
types.

Table 1: Primitive Data Types
Name Range Size
byte -128 -> 127 8-bit signed
short -32768 -> 32767 16-bit signed
int -2147483648 -> 2147483647 32-bit signed
long -9223372036854775808 -> 9223372036854775807 64-bit signed
float ±3.4028235E+38 32-bit IEEE 754
double ±1.79769313486231570E+308 64-bit IEEE 754
char 0 -> 65536 16-bit unsigned
boolean true or false 1-bit

Note: Java uses signed data types except for char’s. The difference between unsigned and signed data types is that
unsigned cannot hold negative values. However unsigned data types have larger positive values.

Primitive data types are split into two categories Integers and Floating Points. Integers are used for whole
numbers, whereas floating points are used for numbers that have decimal points.

Integers

Byte

Bytes are the smallest type of integers. They hava range of -128 to 127. When an integer is required and the value will
be in that range it is best to use a byte as it will save memory.

1 byte variable = 42;
2 System.out.println(variable);

Output

341

Studica Robotics, Release 1.0.0

42

Short

Shorts are used when the integer will fall in between -32768 to 32767.

1 short variable = -4242;
2 System.out.println(variable);

Output

-4242

Int

Int is the most used data type for integers. Unless there is a specific reason to use one of the other integer types int
is always preferred and used. Int’s have a range of -2147483648 to 2147483647.

1 int variable = 123456789;
2 System.out.println(variable);

Output

123456789

Long

Long data types are used when an int is not big enough. Longs have a range of -9223372036854775808 to
9223372036854775807.

Note: Longs require an L to be added at the end of the value.

1 long variable = 9999999999L;
2 System.out.println(variable);

Output

9999999999

Floating Points

float

Floats are used for numbers that have decimals. The range for floats is ±3.4028235E+38.

Note: floats require an f to be added at the end of the value.

342 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

1 float variable = 1.2345f;
2 System.out.println(variable);

Output

1.2345

Note: floats are good when a precision of six to seven decimal points are required.

double

Doubles are used for numbers that have lots of decimals. Unlike floats, doubles have a precision of fifteen decimal
points.

1 double variable = 42.42;
2 System.out.println(variable);

Output

42.42

Note: Unlike floats the value of a double does not require a d at the end.

Scientific Numbers

In Java Floating Points can be scientific numbers.

1 double variable = 42.42e6;
2 float variable1 = 42.42e-2f;
3 System.out.println(variable);
4 System.out.println(variable1);

Output

424200.0
0.4242

Boolean

Booleans are a special data type as they don’t hold a numeric value. Booleans only have two options, true or false.

1 boolean variable = true;
2 boolean variable1 = false;
3 System.out.println(variable);
4 System.out.println(variable1);

Output

40.1. Lesson 1: Data Types and Variables 343

Studica Robotics, Release 1.0.0

true
false

Char

Char is the short form for character. char will store a single character. Char’s use a single quotations ' ' to identify.

1 char variable = 'A';
2 System.out.println(variable);

Output

A

40.1.2 Variables

Variables are a way of storing data that can be used and changed throughout the program.

Variable Declaration

Before a variable may be used it must be declared. This tells the compiler to allocate memory for the variable. The
format for declaring a variable is shown below.

dataType variableName;

• dataType is the data type that the variable holds.

• variableName is the name of the variable you wish to give.

Some examples of real world variables:

1 int number;
2 double area;
3 char letter;

Variables of the same data type can be declared together.

Instead of:

1 int a;
2 int b;
3 int c;

Use:

1 int a, b, c;

Variables should have initial values. It is easy to do this when declaring them.

1 int number = 1;
2 double area = 42.5;
3 char letter = 'B';
4

5 int a = 1, b = 2, c = 3;

344 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

Variable Naming

Variables follow a camel case naming structure. This means that the first word is lower case and any preceding word
in the variable has a capital first letter.

1 // Bad naming of variables ie. no camelCase
2 int Hellothere;
3 double thatsreallycool;
4

5 // Good naming of variables using camelCase
6 int helloThere;
7 double thatsReallyCool;

If you notice it becomes easier to read the different words in the variable.

Variables containing more than one word should be joined together.

1 // Bad variable naming
2 int hello_There;
3 double thats-really-cool;
4

5 // Good variable naming
6 int helloThere;
7 double thatsReallyCool;

Variables must always start with a lowercase letter, an underscore _ or a $ sign. Variables cannot start with a number
or any other symbol.

1 // Acceptable starts of variables
2 int hello;
3 double _variable;
4 long $money;

Variables should always be descriptive but not to long and match the function.

1 // Good Example
2

3 // Variables for calculating Pythagorean theorem
4 double a, b, c;
5

6 // Bad Example
7

8 // Variables for calculating Pythagorean theorem
9 double edge, longerEdge, reallyLongEdge;

Constants

Constants are a special type of variable that cannot change during the operation of the program. Constants are useful
for values that wont change or don’t need to change.

To declare a constant we use:

final dataType CONSTANT_NAME = valueOfConstant;

final tells the compiler that this variable cannot be changed.

40.1. Lesson 1: Data Types and Variables 345

https://en.wikipedia.org/wiki/Camel_case

Studica Robotics, Release 1.0.0

Note: Unlike variables constants use all caps for naming. Also if more than one word is in the constant name we use
an underscore _ to separate them.

Some examples

1 final int CONTROLLER_AXIS = 1;
2 final double PI = 3.14159265358979;

Using Variables in code

Variables make programing easy lets go through some examples.

1 public class Variables
2 {
3 public static void main(String[] args)
4 {
5 int x = 1;
6 System.out.println(x);
7 }
8 }

Output

1

Line 5 holds the variable and its initial value. The variable is x, the data type is int and the value of the variable is 1.

Line 6 is the output of the variable. When printing a variable the quotations " " are not used.

1 public class Variables
2 {
3 public static void main(String[] args)
4 {
5 final double PI = 3.14159265358979;
6 System.out.println("The Value of pi to 15 decimal places is: " + PI);
7 }
8 }

Output

The Value of pi to 15 decimal places is: 3.14159265358979

Line 5 holds the variable which is being used as a constant.

Line 6 is the output. Notice how this time we are mixing a String with a variable. The String “The Value of pi to 15
decimal places is: ” and variable PI are joined by using +.

1 public class Variables
2 {
3 public static void main(String[] args)
4 {
5 double x = 6.84;
6 System.out.println("Original Variable x: " + x);
7 x = 10.8;
8 System.out.println("Changed Variable x: " + x);

(continues on next page)

346 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

(continued from previous page)

9 }
10 }

Output

Original Variable x: 6.84
Changed Variable x: 10.8

In this example we define the variable x and give it the value of 6.84 on line 5. On line 7 we assign x a new value of
10.8.

40.1.3 Exercises

Below are a list of exercises to complete. Answers will be provided in the next section.

Important: To learn properly it is recommended to attempt the exercises before looking at the answers.

1. Write a program that displays each data type. An example output is shown.

byte: 125
short: 32000
int: 500000
long: 9999999999
float: 10.4
double: -50112.56
char: A
boolean: true

2. Write a program that changes the value of a variable 3 times. An example output is shown.

Original: 105
Change 1: 110
Change 2: -15
Change 3: 12

3. Add the following variables together.

int x = 10;
int y = 12;
int z = 42;

Example output

10 + 12 + 42 = 64

40.1. Lesson 1: Data Types and Variables 347

Studica Robotics, Release 1.0.0

Challenge Question

Note: Challenge questions are here to stump you and test your problem solving skills. The content in a challenge
question will be covered in later units.

4. Create a Pythagorean calculator. The user will input values for a and b. The calculator should respond with the
length of the hypotenuse.

The formula for Pythagorean theorem is: 𝑎2 + 𝑏2 = 𝑐2

Example

Welcome to the Pythagorean Calculator!!!

Enter the length of side A: 3
Enter the length of side B: 4
Calculating
The length of the hypotenuse is: 5

40.1.4 Exercise Answers

Question 1:

1 public class QuestionOne
2 {
3 public static void main(String[] args)
4 {
5 byte d1 = 125;
6 short d2 = 32000;
7 int d3 = 500000;
8 long d4 = 9999999999L;
9 float d5 = 10.4f;

10 double d6 = -50112.56;
11 char d7 = 'A';
12 boolean d8 = true;
13

14 System.out.println("byte: " + d1);
15 System.out.println("short: " + d2);
16 System.out.println("int: " + d3);
17 System.out.println("long: " + d4);
18 System.out.println("float: " + d5);
19 System.out.println("double: " + d6);
20 System.out.println("char: " + d7);
21 System.out.println("boolean: " + d8);
22 }
23 }

348 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

Question 2:

Note: There are two solutions to this question

1 public class QuestionTwo
2 {
3 public static void main(String[] args)
4 {
5 int x = 105;
6

7 System.out.println("Original: " + x);
8 System.out.println("Change 1: " + (x = 110));
9 System.out.println("Change 2: " + (x = -15));

10 System.out.println("Change 3: " + (x = 12));
11 }
12 }

or

1 public class QuestionTwo
2 {
3 public static void main(String[] args)
4 {
5 int x = 105;
6

7 System.out.println("Original: " + x);
8 x = 110;
9 System.out.println("Change 1: " + x);

10 x = -15;
11 System.out.println("Change 2: " + x);
12 x = 12;
13 System.out.println("Change 3: " + x);
14 }
15 }

Question 3:

1 public class QuestionThree
2 {
3 public static void main(String[] args)
4 {
5 int x = 10;
6 int y = 12;
7 int z = 42;
8

9 System.out.println(x + " + " + y + " + " + z + " = " + (x + y + z));
10 }
11 }

40.1. Lesson 1: Data Types and Variables 349

Studica Robotics, Release 1.0.0

Challenge Question

1 /*
2 * To change this license header, choose License Headers in Project Properties.
3 * To change this template file, choose Tools | Templates
4 * and open the template in the editor.
5 */
6 package com.edu.unit3;
7

8 import java.util.Scanner;
9

10 /**
11 *
12 * @author james
13 */
14 public class ChallengeQuestion
15 {
16 public static void main(String[] args)
17 {
18 Scanner input = new Scanner(System.in);
19 System.out.println("Welcome to the Pythagorean Calculator!!!\n");
20 System.out.print("Enter the length of side A: ");
21 double a = input.nextDouble();
22 System.out.print("Enter the length of side B: ");
23 double b = input.nextDouble();
24 System.out.println("Calculating");
25 double result = Math.sqrt(Math.pow(a, 2) + Math.pow(b, 2));
26 System.out.println("The length of the hypotenuse is: " + result);
27 }
28 }

Output

Welcome to the Pythagorean Calculator!!!

Enter the length of side A: 3
Enter the length of side B: 4
Calculating
The length of the hypotenuse is: 5.0

40.2 Lesson 2: Type Casting and Operators

40.2.1 Type Casting

Type casting is process of assigning a value of one data type to another data type. There are two types of casts in Java,
Widening and Narrowing.

350 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

Widening Casting

Widening casts are done automatically. A widening cast only happens when going from a smaller data type to a larger
data type. The list from smallest to largest is listed below.

1. byte

2. short

3. char

4. int

5. long

6. float

7. double

Note: The data type boolean cannot be type casted.

Examples

int -> long

1 int typeInt = 42;
2 long typeLong = typeInt;
3

4 System.out.println(typeInt);
5 System.out.println(typeLong);

Output

42
42

byte -> double

1 byte typeByte = 2;
2 double typeDouble = typeByte;
3

4 System.out.println(typeByte);
5 System.out.println(typeDouble);

Output

2
2.0

40.2. Lesson 2: Type Casting and Operators 351

Studica Robotics, Release 1.0.0

Narrowing Casting

Narrowing casting is done when a larger data type needs to be converted to a smaller data type.

Examples

float -> short

1 float typeFloat = -42.27;
2 short typeShort = (short) typeFloat;
3

4 System.out.println(typeFloat);
5 System.out.println(typeShort);

Output

-42.27
-42

40.2.2 Operators

Operators are functions that act upon elements to create new elements. There are 5 types of operator groups in Java.

• Arithmetic

• Assignment

• Bitwise

• Comparison

• Logical

Arithmetic

Arithmetic operators are common mathematical operators.

Table 2: Arithmetic Operators
Operator Meaning Example Result
+ Addition 10 + 5 15
- Subtraction 50 - 8 42
* Multiplication 4 * 6 24
/ Division 2.0 / 1.0 1.0
++ Increment by 1 z++ z + 1
– Decrement by 1 z– z - 1
% Modulo 5 % 2 1

352 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

Assignment

Assignment operators are used to store values in defined variables.

Table 3: Assignment Operators
Operator Meaning Example Example ex-

panded
= Assign x = 10 x = 10
*= Multiply the current value by x *= 5 x = x * 5
/= Divide the current value by x /= 5 x = x / 5
%= Mudulo the current value by x %= 5 x = x % 5
+= Add to the current value by x += 5 x = x + 5
-= Subtract the current value by x -= 5 x = x - 5
<<= Shift the current value left by x <<= 8 x = x << 8
>>= Shift the current value right by x >>= 8 x = x >> 8
&= Bitwise AND the current value by x &= 0xFF x = x & 0xFF
^= Bitwise XOR the current value by x ^= 0xFF x = x ^ 0xFF
|= Bitwise OR the current value by x |= 0xFF x = x | 0xFF

Bitwise

Bitwise operators manipulate the individual bits of numbers.

X = 10 and Y = 2

Table 4: Bitwise Operators
Operator Meaning Example Result
~ Unary NOT ~X -11
& AND X & Y 2
| OR X | Y 10
^ XOR X ^ Y 8
>> Shift Right X >> 1 5
<< Shift Left X << 1 20
>>> Shift right zero fill X >>> 1 5

Comparison

Comparison operators are used to compare two values.

X = 5 and Y = 2

Table 5: Comparison Operators
Operator Meaning Example Result
== Equal to X == Y false
!= Not Equal X != Y true
> Greater than X > Y true
< Less than X < Y false
>= Greater than or equal to X >= Y true
<= Less than or equal to X <= Y false

40.2. Lesson 2: Type Casting and Operators 353

Studica Robotics, Release 1.0.0

Logical

Logical operators determine logic betwen boolean statements.

X = 2

Table 6: Logical Operators
Operator Meaning Example Result
&& AND (X < 5) && (X < 10) true
|| OR (X < 5) || (X < 1) true
! NOT !(X < 5) false

40.2.3 Exercises

Below are a list of exercises to complete. Answers will be provided in the next section.

Important: To learn properly it is recommended to attempt the exercises before looking at the answers.

1. What are the results of these casts?

double X;
short Y = 10;
X = Y;
System.out.println(X);

long Z;
int F = 1234567;
Z = F;
System.out.println(Z);

2. Add to the code below:

1 public class QuestionTwo
2 {
3 public static void main(String[] args)
4 {
5 double X = 12345.54321789;
6

7 // Show X as a double
8 System.out.println("X as a double: " + X);
9

10 // Show X as a float
11

12

13 // Show X as an integer
14

15

16 // Show X as a byte
17

18 }
19 }

3. What are the results of these operations:

354 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

int X = 5 + 2;
int Y = 20 / 2;
int Z = 10 % 3;

X %= 2;
Y /= 5;
Z *= 2;

X == 2;
Y > 1;
Z <= 5;

(5 > 2) && (2 > 2)
(5 <= 5) || (2 == 2)
!(5 <= 6) || (2 == 2) && (3 > 3)

Challenge Question

Note: Challenge questions are here to stump you and test your problem solving skills. The content in a challenge
question will be covered in later units.

4. Create a sales tax calculator. The user is required to input the value of the item. The output may only have 2
decimal places and the sales tax rate is 13%.

Example output

Enter purchase amount: $299.99
Sales Tax is: $38.99

40.2.4 Exercise Answers

Question 1:

1 public class QuestionOne
2 {
3 public static void main(String[] args)
4 {
5 double X;
6 short Y = 10;
7 X = Y;
8 System.out.println(X);
9

10 long Z;
11 int F = 1234567;
12 Z = F;
13 System.out.println(Z);
14 }
15 }

Output

40.2. Lesson 2: Type Casting and Operators 355

Studica Robotics, Release 1.0.0

10.0
1234567

Question 2:

1 public class QuestionTwo
2 {
3 public static void main(String[] args)
4 {
5 double X = 12345.54321789;
6

7 // Show X as a double
8 System.out.println("X as a double: " + X);
9

10 // Show X as a float
11 System.out.println("X as a float: " + (float) X);
12

13 // Show X as an integer
14 System.out.println("X as an integer: " + (int) X);
15

16 // Show X as a byte
17 System.out.println("X as a byte: " + (byte) X);
18 }
19 }

Output

X as a double: 12345.54321789
X as a float: 12345.543
X as an integer: 12345
X as a byte: 57

Note: It would be good to notice that the accuracy of X drops as the cast goes to a smaller sized data type.

Question 3:

1 public class QuestionThree
2 {
3 public static void main(String[] args)
4 {
5 int X = 5 + 2;
6 int Y = 20 / 2;
7 int Z = 10 % 3;
8 System.out.println("X = " + X + " Y = " + Y + " Z = " + Z);
9

10 X %= 2;
11 Y /= 5;
12 Z *= 2;
13 System.out.println("X = " + X + " Y = " + Y + " Z = " + Z);
14

15 System.out.println("(X == 2) = " + (X == 2) + " (Y > 1) = " + (Y > 1) + " (Z
→˓<= 5) = " + (Z <= 5));

(continues on next page)

356 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

(continued from previous page)

16

17 System.out.println("(5 > 2) && (2 > 2) = " + ((5 > 2) && (2 > 2)));
18 System.out.println("(5 <= 5) || (2 == 2) = " + ((5 <= 5) || (2 == 2)));
19 System.out.println("!(5 <= 6) || (2 == 2) && (3 > 3) = " + (!(5 <= 6) || (2

→˓== 2) && (3 > 3)));
20 }
21 }

Output

X = 7 Y = 10 Z = 1
X = 1 Y = 2 Z = 2
(X == 2) = false (Y > 1) = true (Z <= 5) = true
(5 > 2) && (2 > 2) = false
(5 <= 5) || (2 == 2) = true
!(5 <= 6) || (2 == 2) && (3 > 3) = false

Challenge Question

1 /*
2 * To change this license header, choose License Headers in Project Properties.
3 * To change this template file, choose Tools | Templates
4 * and open the template in the editor.
5 */
6 package com.edu.unit3;
7

8 import java.util.Scanner;
9

10 /**
11 *
12 * @author james
13 */
14 public class ChallengeQuestion
15 {
16 public static void main(String[] args)
17 {
18 Scanner input = new Scanner(System.in);
19

20 System.out.print("Enter purchase amount: $");
21 double purchaseAmount = input.nextDouble();
22

23 double tax = purchaseAmount * 0.13;
24 System.out.println("Sales tax is: $" + (int)(tax * 100) / 100.0);
25 }
26 }

Output

Enter purchase amount: $299.99
Sales Tax is: $38.99

40.2. Lesson 2: Type Casting and Operators 357

Studica Robotics, Release 1.0.0

40.3 Lesson 3: Strings

40.3.1 Strings

Strings are a sequence of characters collected together in a char array. In Java Strings are objects and are immutable.
What this means is that if a String is changed in anyway that a new String is created in its place.

358 Chapter 40. Unit 3: Java Essentials

Studica Robotics, Release 1.0.0

40.3. Lesson 3: Strings 359

Studica Robotics, Release 1.0.0

40.3.2 String Builder

40.3.3 Exercises

40.3.4 Exercise Answers

40.4 Lesson 4: Math and Boolean

40.4.1 Math

40.4.2 Boolean

40.4.3 Exercises

40.4.4 Exercise Answers

40.5 Lesson 5: If/Else Statements

40.5.1 If Else Statements

40.5.2 Exercises

40.5.3 Exercise Answers

40.6 Lesson 6: Switch Statements

40.6.1 Switch Statements

40.6.2 Exercises

40.6.3 Exercise Answers

40.7 Lesson 7: Loops

40.7.1 While Loop

40.7.2 For Loop

40.7.3 Exercises

40.7.4 Exercise Answers

40.8 Lesson 8: Arrays

40.8.1 Arrays

40.8.2 Array List

40.8.3 Exercises

40.8.4 Exercise Answers

360 Chapter 40. Unit 3: Java Essentials

CHAPTER

FORTYONE

UNIT 4: INPUTS AND METHODS

41.1 Lesson 1: Inputs from the User

41.1.1 Scanner

Receiving user data is an important part of coding to interact with the user. To receive input from the user, the
Scanner class is used. This is found under the java.util package.

Hence we will need to import the library first,

1 import java.util.Scanner;

Note: This is the most important step and also the easiest to forget. If the Scanner class is not implemented, all its
function and instances cannot be used.

Now we can use the Scanner class by creating an object of the class.

1 Scanner input = new Scanner(System.in);

The line above creates a Scanner instance input that will read the user input depending on the methods called. The
following are the eight most common methods to retrieve user input depending on the data type.

Methods Return Type
nextByte() Byte
nextShort() Short
nextInt() Int
nextLong() Long
nextFloat() Float
nextDouble() Double
nextLine() String
nextBoolean Boolean

Important: It is important that the input type matches the method’s data type, or else you will get an exception/error
message.

361

Studica Robotics, Release 1.0.0

Setting up with Scanner class

1 import java.util.Scanner; // Import Scanner library
2

3 class TestClass
4 {
5 public static void main(String[] args)
6 {
7 // Create an instance of the Scanner class
8 Scanner input = new Scanner(System.in);
9

10 // Source code as follows
11 }
12 }

Byte

1 System.out.println("Enter a byte integer:");
2

3 // Reading the input as byte data type
4 byte aByte = input.nextByte();
5 System.out.println("aByte = " + aByte);

Output

1 Enter a byte integer:
2 5
3 aByte = 5

Short

1 System.out.println("Enter a short integer:");
2

3 // Reading the input as short data type
4 short aShort = input.nextShort();
5 System.out.println("aShort = " + aShort);

Output

1 Enter a short integer:
2 50
3 aShort = 50

362 Chapter 41. Unit 4: Inputs and Methods

Studica Robotics, Release 1.0.0

Int

1 System.out.println("Enter a integer:");
2

3 // Reading the input as a int data type
4 int aInt = input.nextInt();
5 System.out.println("aInt = " + aInt);

Output

1 Enter a integer:
2 100
3 aInt = 100

Long

1 System.out.println("Enter a long integer:");
2

3 // Reading the input as a long data type
4 long aLong = input.nextLong();
5 System.out.println("aLong = " + aLong);

Output

1 Enter a long integer:
2 12345
3 aLong = 12345

Float

1 System.out.println("Enter a float:");
2

3 // Reading the input as a float data type
4 float aFloat = input.nextFloat();
5 System.out.println("aFloat = " + aFloat);

Output

1 Enter a float:
2 95.43
3 aFloat = 95.43

41.1. Lesson 1: Inputs from the User 363

Studica Robotics, Release 1.0.0

Double

1 System.out.println("Enter a double:");
2

3 // Reading the input as a double data type
4 double aDouble = input.nextDouble();
5 System.out.println("aDouble = " + aDouble);

Output

1 Enter a double:
2 97584.45
3 aDouble = 97584.45

String

1 System.out.println("Enter a string:");
2

3 // Reading the input as a string data type
4 String aString = input.nextLine();
5 System.out.println("aString = " + aString);

Output

1 Enter a string:
2 Hello World
3 aString = Hello World

Boolean

1 System.out.println("Enter a boolean:");
2

3 // Reading the input as a boolean variable
4 boolean aBoolean = input.nextBoolean();
5 System.out.println("aBoolean = " + aBoolean);

Output

1 Enter a boolean:
2 true
3 aBoolean = true

364 Chapter 41. Unit 4: Inputs and Methods

Studica Robotics, Release 1.0.0

Example

The following block of code shows an example of using the Scanner library.

1 import java.util.Scanner; // Import Scanner library
2

3 class TestClass
4 {
5 public static void main(String[] args)
6 {
7 Scanner input = new Scanner(System.in);
8

9 System.out.print("Please enter your name: ");
10 String name = input.nextLine();
11

12 System.out.println("Hi " + name + ", what is your favourite number?");
13 int num = input.nextInt();
14

15 System.out.println("Your favourite number is " + num + ".");
16 }
17 }

Output

1 Please enter your name: Jack
2 Hi Jack, what is your favourite number?
3 7
4 Your favourite number is 7.

41.1.2 Exercises

41.1.3 Exercise Answers

41.2 Lesson 2: Methods

41.2.1 Methods

41.2.2 Parameters

41.2.3 Overloading

41.2.4 Exercises

41.2.5 Exercise Answers

41.2. Lesson 2: Methods 365

Studica Robotics, Release 1.0.0

366 Chapter 41. Unit 4: Inputs and Methods

CHAPTER

FORTYTWO

STYLE GUIDE

42.1 Filenames

Only lowercase alphanumeric characters, - (minus) symbol and the .rst extension should be used.

Examples:

• style-guide.rst

• index.rst

• a-super-long-filename-that-is-to-long.rst

42.2 Preferred Editor

It is preferred to use Notepad++ as the text editor for creating files. When creating a .rst file tabs need to be replaced
with a space indentation of 3.

This can be accomplished easilly with Notepad++ by going to Settings/Preferences/Language. In Lan-
guage look to the right side for Tab Settings, select [Default] then check Replace by space and set the
Tab size: to 3. An example image is shown below.

367

https://notepad-plus-plus.org/

Studica Robotics, Release 1.0.0

Important: All text should be on the same line. To make it easier to read turn on text wrap. In Notepad++ this feature
is enabled by going to View/Word wrap

42.3 Indentation and Blank Lines

Indentations should always match the previous level of indentation unless a new content block is created.

There should always be 1 blank line between everything. Except for lists.

.. tabs:: Example

some stuff

.. note:: some other stuff

.. image:: images/fake-image-1.png
:align: center

Note: The highlight lines are the 1 blank line. Also note how there is no blank line between .. image:: and
:align: as they are related and not seperate blocks.

42.4 Naming Conventions

To match other documentation use the following case for these terms exactly:

• roboRIO

• LabVIEW

• myRIO

• Visual Studio Code or VS Code

• macOS

• Linux

• VMXpi

42.5 Images

Images are easy to add and give a visual aspect to the user.

.. image:: images/example-image.png

Images should always be aligned to the center.

.. image:: images/example-image.png
:align: center

368 Chapter 42. Style Guide

Studica Robotics, Release 1.0.0

If an image is to big or needs to be resized options such as width can be used to scale the image.

.. image:: images/example-image.png
:align: center
:width: 1000

42.5.1 Image Files

Location

Images should be stored in the same directory as the file using the image, located in a sub-directory images.

docs/Contributing/style-guide <- is the file
docs/Contributing/images/style-guide-1.png <- image location

File Types

Supported image types:

• .png

• .jpg

• .gif

Note: If including a .gif image a .png static version of the same name is required to be included in the images
folder. This is required for a proper pdf build.

If using a .gif the format for the image would be this:

.. image:: images/example-image.*
:align: center

Naming Conventions

Images should be named corresponding to the name of the file using it and incremented with a number enumerated to
the end. Examples are shown below.

Filename style-guide.rst would have the images

• style-guide-1.png

• style-guide-2.png

Filename another-example.rst would have the images

• another-example-1.gif

• another-example-1.png

42.5. Images 369

Studica Robotics, Release 1.0.0

42.6 Headings

Headings are signified with an underline with a specific symbol along with the heading character length. The following
are the symbol levels to create heading:

1. = used for document titles and should only be used once

Document Title
==============

2. - signifies the chapters or sections

Chapter or Section

3. ^ signifies a new sub-section

New Sub-Section
^^^^^^^^^^^^^^^

4. ~ signifies a sub-sub-section

Sub-Sub-Section
~~~~~~~~~~~~~~~

Note: If a heading more than a sub-sub-section is required then in most cases it should be written another way

42.7 Links

Links should be formated to be anonymous hyperlinks. The format of which is shown below.

`Link <https://google.com>`__

This will come out as: Link

Note: The anonymous link has a few sections. First the `, then the text the link will attach to in this case Link, the
link itself in <>, another `, and finally at the end there are TWO underscores __.

42.8 Code Blocks

To create a block of code, use the code-block directive.

Important: Line numbers are required for any block of code that contatains code. This is shown below. An exception
for not having line numbers is when the code-block is just used for unformated text.

370 Chapter 42. Style Guide

https://google.com


Studica Robotics, Release 1.0.0

.. code-block:: (language)
:linenos:

Source code

Here is a simple Java example.

.. code-block:: java
:linenos:

System.out.println("Hello to whomever is reading this.");

Will come out as:

1 System.out.println("Hello to whomever is reading this.");

To higlight certain lines to stand out the :emphasize-lines: is used.

.. code-block:: java
:linenos:
:emphasize-lines: 2,4

System.out.println("Hello to whomever is reading this.");
System.out.println("I hope you learn something.");
System.out.println("Its real important.");
System.out.println("For success.");

Will come out as:

1 System.out.println("Hello to whomever is reading this.");
2 System.out.println("I hope you learn something.");
3 System.out.println("Its real important.");
4 System.out.println("For success.");

Hint: The use of 2,3,4 is useful for single lines but for ranges 2-4 would work better. They can also be joined I.E.
2,4,6-10,12.

42.9 Lists

There are two types of lists and they are easy to use.

- This is
- a simple
- bullet lists

1. This is
2. a simple
3. numeric list

• This is

• a simple

• bullet lists

42.9. Lists 371



Studica Robotics, Release 1.0.0

1. This is

2. a simple

3. numeric list

Note: List’s don’t require the 1 line blank space in-between like the other functions

42.10 Tabs

Tabs are a useful tool with many uses.

A common use case in this documentation is Java and C++ tabs.

.. tabs::

.. tab:: Java

.. code-block:: java
:linenos:

System.out.println("Hello World!");

.. tab:: C++

.. code-block:: c++
:linenos:

std::cout << "Hello World!";

Would come out looking like:

Java

1 System.out.println("Hello World!");

C++

1 std::cout << "Hello World!";

For more information, vist Sphinx tabs.

42.11 Admonitions

Admonitions are a popup to indicate a warning or important information. The following are the possible admonitions;
attention, caution, danger, error, hint, important, note, tip and warning. To utilize a admonition use the keywords
admonition as a directive.

For ease of use place descriptions on the same line as the admonition.

Yes

.. attention:: Description

372 Chapter 42. Style Guide

https://github.com/djungelorm/sphinx-tabs


Studica Robotics, Release 1.0.0

No

.. attention::

Description

Examples of each:

Attention: This is the attention admonition

Caution: This is the caution admonition

Danger: This is the danger admonition

Error: This is the error admonition

Hint: This is the hint admonition

Important: This is the important admonition

Note: This is the note admonition

Tip: This is the tip admonition

Warning: This is the warning admonition

42.11. Admonitions 373


	Getting Started
	Software Setup
	Programming
	LabVIEW Setup
	LabVIEW Toolkit
	Using LabVIEW
	Getting Started
	Using ROS
	RQT
	Control Station
	Robotics and Control Systems
	Networking
	Connecting Sensors and Actuators
	WPI Channel Addressing
	Configuring and Testing the SR Pro Camera
	Calibrating and Using the navX-sensor IMU
	Updating Firmware
	VMX OS Image
	Troubleshooting
	Titan Quad
	Programming the Titan
	Download Update App
	Using the Update App
	Titan Status Light
	Troubleshooting
	Cobra
	Ultrasonic Distance Sensor
	Sharp IR Distance Sensor
	Limit Switches
	Encoders
	SR Pro Camera
	Installing the Ribbon Cable
	Reading a Barcode
	Servo Motors
	Maverick DC Motor
	Servo Power Block
	Servo Smart Programmer
	Unit 1: Introduction to Programming
	Unit 2: Starting Java
	Unit 3: Java Essentials
	Unit 4: Inputs and Methods
	Style Guide

